产量(工程)
阳极
催化作用
化学
法拉第效率
生物量(生态学)
能量转换效率
化学工程
反应性(心理学)
动力学
氧化还原
材料科学
无机化学
电极
有机化学
冶金
光电子学
物理化学
工程类
医学
量子力学
病理
地质学
海洋学
替代医学
物理
作者
Lingxia Zheng,Penghui Xu,Yujuan Zhao,Zhenyu Bao,Xingyu Luo,Xiaowei Shi,Qi Wu,Huajun Zheng
标识
DOI:10.1016/j.apcatb.2023.122679
摘要
Biomass upgrading driven by solar energy in a photoelectrochemical (PEC) cell offers an energy-saving and cost-effective alternative route to yield value-added products. Herein, we report remarkably efficient solar-driven TEMPO mediated 5-hydroxymethylfurfural (HMF) oxidation over NiFe-LDH/BiVO4 photoanodes: yield of 2,5-furandicarboxylic acid (FDCA) and faradaic efficiency increase from 1.7 %/2.5 % over BiVO4 to ∼100 %/100 % over 1-LDH/BiVO4 at 0.7 VRHE, demonstrating boosted catalytic efficiency and utility of PEC cells. The distinctly larger surface potential difference (1.5 times) validates the effective charge separation and transfer in 1-LDH/BiVO4, and more holes can be available to oxidize TEMPO. The effect of TEMPO is carefully investigated and it suggests that TEMPO-mediated PEC oxidation of HMF is thermodynamically and kinetically favorable in contrast to water oxidation. Superb reactivity can be achieved with an increase of TEMPO concentration. This work demonstrates that solar-driven biomass upgrading can be a feasible anode reaction for solar-fuel production by replacing the sluggish water oxidation process.
科研通智能强力驱动
Strongly Powered by AbleSci AI