Nucleation, growth and dissolution of Li metal dendrites and the formation of dead Li in Li-ion batteries investigated by operando electrochemical liquid cell scanning transmission electron microscopy

材料科学 溶解 成核 透射电子显微镜 电化学 阳极 电解质 金属 扫描电子显微镜 半电池 枝晶(数学) 化学工程 纳米技术 电极 冶金 复合材料 物理化学 工作电极 有机化学 化学 几何学 数学 工程类
作者
Walid Dachraoui,Ruben‐Simon Kühnel,Corsin Battaglia,Rolf Erni
出处
期刊:Nano Energy [Elsevier]
卷期号:130: 110086-110086 被引量:3
标识
DOI:10.1016/j.nanoen.2024.110086
摘要

Li metal dendrites, which can form on the anode of Li-ion batteries during charging, not only accelerate their aging but may also pose a safety hazard when causing a short-circuit within the battery. Therefore, a fundamental understanding of the mechanisms governing the early stages of Li plating, the progression into dendrites, and the formation of dead Li, is imperative. Here, we employ operando electrochemical liquid cell scanning transmission electron microscopy (ec-LC-STEM) to monitor, in real-time, nanoscale processes occurring at the anode-electrolyte interface of a Li-ion battery during charge/discharge. Our results indicate that Li metal dendrites nucleate as spherical Li nanoparticles beneath the solid electrolyte interphase (SEI) and subsequently grow until dendritic Li metal is formed. During discharge, Li dendrites undergo incomplete dissolution, leading to the formation of dead Li. Interestingly, the SEI layers play a pivotal role in both the growth and the dissolution processes. Our findings reveal that the growth of Li dendrites is a multi-step process: (i) nucleation, (ii) root growth, and (iii) tip growth. We elucidate that the formation of dead Li is associated with the morphology of the initially developed dendrites and the structure of the SEI layer. The thinning of the inhomogeneously thick Li whiskers leads to the contraction of the root before the tip, ultimately resulting in the creation of electrically isolated Li metal. This work sheds light on dendritic Li growth as well as on the formation of dead Li and provides significant insights for future electrode designs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YFW发布了新的文献求助10
刚刚
1秒前
料峭声花发布了新的文献求助10
2秒前
小枫完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
爆米花应助岳凯采纳,获得10
7秒前
7秒前
俊逸尔风完成签到 ,获得积分10
7秒前
yyymmma发布了新的文献求助10
7秒前
克野发布了新的文献求助20
8秒前
善学以致用应助洞两采纳,获得10
10秒前
10秒前
支妙芙完成签到,获得积分10
10秒前
ff完成签到,获得积分10
11秒前
12秒前
kkkk发布了新的文献求助10
15秒前
快乐的纸飞机完成签到 ,获得积分10
15秒前
JamesPei应助心灵美海蓝采纳,获得10
16秒前
16秒前
17秒前
17秒前
18秒前
CipherSage应助YFW采纳,获得10
18秒前
18秒前
19秒前
George发布了新的文献求助50
20秒前
21秒前
22秒前
cxh发布了新的文献求助10
23秒前
23秒前
23秒前
合适书蕾完成签到 ,获得积分20
23秒前
24秒前
烟花应助yuechat采纳,获得10
26秒前
26秒前
...发布了新的文献求助10
26秒前
双黄应助韦老虎采纳,获得10
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256242
求助须知:如何正确求助?哪些是违规求助? 2898419
关于积分的说明 8301091
捐赠科研通 2567588
什么是DOI,文献DOI怎么找? 1394589
科研通“疑难数据库(出版商)”最低求助积分说明 652895
邀请新用户注册赠送积分活动 630522