石英晶体微天平
复合数
丙烯酸
石墨烯
材料科学
氧化物
化学工程
石英
湿度
化学
复合材料
纳米技术
吸附
共聚物
聚合物
有机化学
物理
热力学
工程类
冶金
作者
Le Ji,Y. Pan,Zheng Cao,Ruotong Wang,Haicun Yang,Junfeng Cheng,Chunlin Liu,Xiaowang Lu,Louis C. P. M. de Smet
摘要
Abstract The composite microgels were synthesized from N ‐Isopropylacrylamide (NIPAM) and acrylic acid (AA) monomers in the presence of graphene oxide (GO) using an in situ radical copolymerization method. The successful preparation of these composite microgels was investigated through Fourier transform infrared spectroscopy (FTIR), ultraviolet visible absorption spectroscopy (UV–vis), and Raman spectroscopy. Due to the hydrophilic properties of GO and the microgels containing oxygenated groups (OH, COOH, and CONH 2 ), quartz crystal microbalance (QCM) sensors can be fabricated by spraying the GO/P(NIPAM ‐co‐ AA) dispersion onto QCM sensors as sensitive coating materials. The results indicate a notable enhancement in the performance of GO/P(NIPAM ‐co‐ AA) modified QCM humidity sensor, compared to QCM sensors modified with either GO or P(NIPAM ‐co‐ AA) microgels alone. This improvement is mainly evidenced by higher sensitivity and reduced moisture hysteresis. The humidity sensing mechanism is based on the combined effect of GO and P(NIPAM ‐co‐ AA) microgels, which synergistically enhance the sensor's performance. Additionally, the results from water contact angle measurements, laser scanning confocal microscopy (LSCM), and scanning electron microscope (SEM) show that GO/P(NIPAM ‐co‐ AA) exhibits greater roughness and stronger hydrophilicity than either GO or P(NIPAM ‐co‐ AA) microgels alone. These properties make GO/P(NIPAM ‐co‐ AA) an effective moisture‐sensitive material for QCM sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI