A Hybrid GNN Approach for Improved Molecular Property Prediction

财产(哲学) 计算机科学 生物系统 计算生物学 生物 认识论 哲学
作者
Pedro Quesado,Luis H.M. Torres,Bernardete Ribeiro,Joel P. Arrais
出处
期刊:Journal of Computational Biology [Mary Ann Liebert, Inc.]
卷期号:31 (11): 1146-1157
标识
DOI:10.1089/cmb.2023.0452
摘要

The development of new drugs is a vital effort that has the potential to improve human health, well-being and life expectancy. Molecular property prediction is a crucial step in drug discovery, as it helps to identify potential therapeutic compounds. However, experimental methods for drug development can often be time-consuming and resource-intensive, with a low probability of success. To address such limitations, deep learning (DL) methods have emerged as a viable alternative due to their ability to identify high-discriminating patterns in molecular data. In particular, graph neural networks (GNNs) operate on graph-structured data to identify promising drug candidates with desirable molecular properties. These methods represent molecules as a set of node (atoms) and edge (chemical bonds) features to aggregate local information for molecular graph representation learning. Despite the availability of several GNN frameworks, each approach has its own shortcomings. Although, some GNNs may excel in certain tasks, they may not perform as well in others. In this work, we propose a hybrid approach that incorporates different graph-based methods to combine their strengths and mitigate their limitations to accurately predict molecular properties. The proposed approach consists in a multi-layered hybrid GNN architecture that integrates multiple GNN frameworks to compute graph embeddings for molecular property prediction. Furthermore, we conduct extensive experiments on multiple benchmark datasets to demonstrate that our hybrid approach significantly outperforms the state-of-the-art graph-based models. The data and code scripts to reproduce the results are available in the repository, https://github.com/pedro-quesado/HybridGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
公孙朝雨完成签到 ,获得积分10
刚刚
深情安青应助烂漫的衬衫采纳,获得10
1秒前
超级的鹅完成签到,获得积分10
1秒前
ddd完成签到,获得积分10
1秒前
菲菲完成签到,获得积分10
1秒前
boyue发布了新的文献求助10
2秒前
可靠觅风发布了新的文献求助10
2秒前
fcyyc发布了新的文献求助10
2秒前
Llzaj发布了新的文献求助10
2秒前
漠北发布了新的文献求助10
3秒前
3秒前
十二月完成签到,获得积分10
3秒前
3秒前
丘比特应助年轻的笑萍采纳,获得10
4秒前
盲目逛恋完成签到,获得积分20
4秒前
GGGGGG果果完成签到,获得积分10
4秒前
superhero完成签到,获得积分10
5秒前
李健应助xiaojinzi采纳,获得10
6秒前
6秒前
盼不热夏发布了新的文献求助200
6秒前
蒸馏水发布了新的文献求助10
6秒前
CyrusSo524应助不敢装睡采纳,获得10
8秒前
dsv发布了新的文献求助20
8秒前
勤奋酒窝完成签到,获得积分10
8秒前
8秒前
8秒前
小二郎应助盲目逛恋采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
雨中客完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
ShenLi完成签到,获得积分10
11秒前
PHW完成签到,获得积分10
11秒前
wanci应助和谐的鹤轩采纳,获得10
11秒前
11秒前
12秒前
Lc发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016369
求助须知:如何正确求助?哪些是违规求助? 3556535
关于积分的说明 11321511
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812429
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060