A Hybrid GNN Approach for Improved Molecular Property Prediction

财产(哲学) 计算机科学 生物系统 计算生物学 生物 认识论 哲学
作者
Pedro Quesado,Luis Torres,Bernardete Ribeiro,Joel P. Arrais
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
标识
DOI:10.1089/cmb.2023.0452
摘要

The development of new drugs is a vital effort that has the potential to improve human health, well-being and life expectancy. Molecular property prediction is a crucial step in drug discovery, as it helps to identify potential therapeutic compounds. However, experimental methods for drug development can often be time-consuming and resource-intensive, with a low probability of success. To address such limitations, deep learning (DL) methods have emerged as a viable alternative due to their ability to identify high-discriminating patterns in molecular data. In particular, graph neural networks (GNNs) operate on graph-structured data to identify promising drug candidates with desirable molecular properties. These methods represent molecules as a set of node (atoms) and edge (chemical bonds) features to aggregate local information for molecular graph representation learning. Despite the availability of several GNN frameworks, each approach has its own shortcomings. Although, some GNNs may excel in certain tasks, they may not perform as well in others. In this work, we propose a hybrid approach that incorporates different graph-based methods to combine their strengths and mitigate their limitations to accurately predict molecular properties. The proposed approach consists in a multi-layered hybrid GNN architecture that integrates multiple GNN frameworks to compute graph embeddings for molecular property prediction. Furthermore, we conduct extensive experiments on multiple benchmark datasets to demonstrate that our hybrid approach significantly outperforms the state-of-the-art graph-based models. The data and code scripts to reproduce the results are available in the repository, https://github.com/pedro-quesado/HybridGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信鞯发布了新的文献求助10
刚刚
1秒前
Yuna96完成签到,获得积分10
1秒前
复杂向彤完成签到,获得积分10
2秒前
希望天下0贩的0应助aj采纳,获得10
2秒前
CCsouljump发布了新的文献求助10
3秒前
姜姜姜发布了新的文献求助10
3秒前
健康豆芽菜完成签到 ,获得积分10
3秒前
4秒前
hif1a发布了新的文献求助10
4秒前
思源应助quan12138采纳,获得80
6秒前
Yziii应助zhimajiang采纳,获得20
6秒前
orixero应助nice采纳,获得10
7秒前
ray发布了新的文献求助10
8秒前
大个应助自信鞯采纳,获得10
9秒前
遇见完成签到 ,获得积分10
9秒前
淡淡的若冰应助Layli采纳,获得10
9秒前
9秒前
暮霭沉沉应助姜姜姜采纳,获得10
9秒前
9秒前
偶然847完成签到,获得积分10
10秒前
10秒前
HEIKU应助orange采纳,获得10
10秒前
11秒前
Jenny完成签到,获得积分10
11秒前
顺心真完成签到,获得积分20
12秒前
12秒前
12秒前
12秒前
renlangfen发布了新的文献求助10
12秒前
12秒前
汤易非关注了科研通微信公众号
12秒前
benben应助孙小猪采纳,获得10
13秒前
quan12138发布了新的文献求助80
14秒前
bkagyin应助ny采纳,获得30
14秒前
14秒前
14秒前
kilig发布了新的文献求助10
15秒前
ada1112完成签到,获得积分10
15秒前
追梦的人发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919