创伤性脑损伤
神经科学
医学
心理学
医疗急救
精神科
作者
Geoffrey P. Dobson,Jodie L. Morris,Hayley L. Letson
标识
DOI:10.1016/j.brainres.2024.149271
摘要
Severe traumatic brain injury (TBI) is a devastating injury with a mortality of ∼ 25-30 %. Despite decades of high-quality research, no drug therapy has reduced mortality. Why is this so? We argue two contributing factors for the lack of effective drug therapies include the use of specific-pathogen free (SPF) animals for translational research and the flawed practice of single-nodal targeting for drug design. A revolution is required to better understand how the whole body responds to TBI, identify new markers of its progression, and discover new system-acting drugs to treat it. In this review, we present a brief history of TBI, discuss its system's pathophysiology and propose a new research strategy for the 21st century. TBI progression develops from injury signals radiating from the primary impact, which can cause local ischemia, hemorrhage, excitotoxicity, cellular depolarization, immune dysfunction, sympathetic hyperactivity, blood brain barrier breach, coagulopathy and whole-body dysfunction. Metabolic reprograming of immune cells drives neuroinflammation and secondary injury processes. We propose if sympathetic hyperactivity and immune cell activation can be corrected early, cardiovascular function and endothelial-glycocalyx-mitochondrial coupling can be restored, and secondary injury minimized with improved patient outcomes. The therapeutic goal is to switch the injury phenotype to a healing phenotype by restoring homeostasis and maintaining sufficient tissue O
科研通智能强力驱动
Strongly Powered by AbleSci AI