EA‐YOLO: An Efficient and Accurate UAV Image Object Detection Algorithm

计算机科学 特征(语言学) 无人机 目标检测 人工智能 失败 残余物 对象(语法) 算法 计算机视觉 模式识别(心理学) 哲学 语言学 遗传学 并行计算 生物
作者
Dehao Dong,Jianzhuang Li,Haiying Liu,Lixia Deng,Jason Gu,Lida Liu,Shuang Li
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
卷期号:20 (1): 61-68
标识
DOI:10.1002/tee.24180
摘要

An improved EA‐YOLO object detection algorithm based on YOLOv5 is proposed to address the issues of drastic changes in target scale, low detection accuracy, and high miss rate in unmanned aerial vehicle aerial photography scenarios. Firstly, a DFE module was proposed to improve the effectiveness of feature extraction and enhance the whole model's ability to learn residual features. Secondly, a CWFF architecture was introduced to enable deeper feature fusion and improve the effectiveness of feature fusion. Finally, in order to solve the traditional algorithm's shortcomings it is difficult to detect small targets. We have designed a novel SDS structure and adopted a strategy of reusing low‐level feature maps to enhance the network's ability to detect small targets, making it more suitable for detecting some small objects in drone images. Experiments in the VisDrone2019 dataset demonstrated that the proposed EA‐YOLOs achieved an average accuracy mAP@0.5 of 39.9%, which is an 8% improvement over YOLOv5s, and mAP@0.5:0.95 of 22.2%, which is 5.2% improvement over the original algorithm. Compared with YOLOv3, YOLOv5l, and YOLOv8s, the mAP@0.5 of EA‐YOLOs improved by 0.9%, 1.8%, and 0.6%, while the GFLOPs decreased by 86.4%, 80.6%, and 26.7%. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安安发布了新的文献求助10
1秒前
沉默的黑猫完成签到,获得积分10
3秒前
3秒前
冷静妙之完成签到,获得积分10
3秒前
Orange应助称心的蛟凤采纳,获得10
4秒前
5秒前
5秒前
追寻的踏歌完成签到,获得积分10
5秒前
5秒前
yml完成签到,获得积分10
6秒前
共享精神应助齐平露采纳,获得10
7秒前
7秒前
8秒前
木言完成签到 ,获得积分10
9秒前
Zhan完成签到,获得积分10
9秒前
小时候发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
科研小白发布了新的文献求助10
11秒前
12秒前
12秒前
Hello应助老龙采纳,获得10
12秒前
Lucas应助llg采纳,获得10
13秒前
13秒前
魔城完成签到,获得积分20
13秒前
今后应助平淡的毛衣采纳,获得10
14秒前
14秒前
长情奄完成签到,获得积分10
15秒前
哈哈哈完成签到,获得积分10
15秒前
Pendragon完成签到,获得积分10
16秒前
lynnie发布了新的文献求助10
17秒前
NexusExplorer应助flysky120采纳,获得10
18秒前
齐平露发布了新的文献求助10
18秒前
居学尉完成签到,获得积分0
18秒前
18秒前
向日葵发布了新的文献求助10
18秒前
赘婿应助木言采纳,获得10
19秒前
顾矜应助凉雨街采纳,获得10
19秒前
好好女士完成签到 ,获得积分10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3655003
求助须知:如何正确求助?哪些是违规求助? 3218211
关于积分的说明 9722237
捐赠科研通 2926324
什么是DOI,文献DOI怎么找? 1602678
邀请新用户注册赠送积分活动 755653
科研通“疑难数据库(出版商)”最低求助积分说明 733433