TransDiffSeg: Transformer-Based Conditional Diffusion Segmentation Model for Abdominal Multi-Objective

粒度 分割 计算机科学 概率逻辑 归纳偏置 人工智能 模式识别(心理学) 变压器 数据挖掘 算法 机器学习 多任务学习 工程类 电气工程 系统工程 电压 任务(项目管理) 操作系统
作者
WenWen Gu,Guodong Zhang,Ronghui Ju,SuRan Wang,Yanlin Li,TingYu Liang,Wei Guo,Zhaoxuan Gong
标识
DOI:10.1007/s10278-024-01206-7
摘要

In the domain of medical image segmentation, traditional diffusion probabilistic models are hindered by local inductive biases stemming from convolutional operations, constraining their ability to model long-term dependencies and leading to inaccurate mask generation. Conversely, Transformer offers a remedy by obviating the local inductive biases inherent in convolutional operations, thereby enhancing segmentation precision. Currently, the integration of Transformer and convolution operations mainly occurs in two forms: nesting and stacking. However, both methods address the bias elimination at a relatively large granularity, failing to fully leverage the advantages of both approaches. To address this, this paper proposes a conditional diffusion segmentation model named TransDiffSeg, which combines Transformer with convolution operations from traditional diffusion models in a parallel manner. This approach eliminates the accumulated local inductive bias of convolution operations at a finer granularity within each layer. Additionally, an adaptive feature fusion block is employed to merge conditional semantic features and noise features, enhancing global semantic information and reducing the Transformer's sensitivity to noise features. To validate the impact of granularity in bias elimination on performance and the impact of Transformer in alleviating the accumulated local inductive biases of convolutional operations in diffusion probabilistic models, experiments are conducted on the AMOS22 dataset and BTCV dataset. Experimental results demonstrate that eliminating local inductive bias at a finer granularity significantly improves the segmentation performance of diffusion probabilistic models. Furthermore, the results confirm that the finer the granularity of bias elimination, the better the segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
help3q完成签到,获得积分10
刚刚
刚刚
刚刚
一点就通发布了新的文献求助10
1秒前
美好斓发布了新的文献求助10
2秒前
zhenzheng完成签到 ,获得积分10
2秒前
大模型应助Chen二月三石采纳,获得10
4秒前
4秒前
god发布了新的文献求助10
4秒前
菜芽君完成签到,获得积分10
4秒前
刘岩完成签到,获得积分10
5秒前
5秒前
666999完成签到,获得积分10
9秒前
泊声发布了新的文献求助10
9秒前
9秒前
高大又蓝完成签到,获得积分20
13秒前
14秒前
大狒狒发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
18秒前
midoli发布了新的文献求助10
20秒前
20秒前
大个应助万有引力采纳,获得10
21秒前
思源应助天真的棒棒糖采纳,获得10
21秒前
lsl发布了新的文献求助30
21秒前
22秒前
发的不太好完成签到,获得积分10
24秒前
25秒前
落后凝莲完成签到,获得积分10
25秒前
25秒前
Ava应助潘榆采纳,获得30
26秒前
26秒前
深情安青应助maz123456采纳,获得10
28秒前
斯文败类应助企鹅采纳,获得10
30秒前
科研通AI2S应助CHAIZH采纳,获得10
30秒前
pp完成签到,获得积分10
31秒前
huijuan完成签到,获得积分10
32秒前
随机昵称发布了新的文献求助10
32秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212011
求助须知:如何正确求助?哪些是违规求助? 2860865
关于积分的说明 8126364
捐赠科研通 2526752
什么是DOI,文献DOI怎么找? 1360566
科研通“疑难数据库(出版商)”最低求助积分说明 643243
邀请新用户注册赠送积分活动 615469