TransDiffSeg: Transformer-Based Conditional Diffusion Segmentation Model for Abdominal Multi-Objective

粒度 分割 计算机科学 概率逻辑 归纳偏置 人工智能 模式识别(心理学) 变压器 数据挖掘 算法 机器学习 多任务学习 工程类 电压 电气工程 操作系统 系统工程 任务(项目管理)
作者
WenWen Gu,Guodong Zhang,Ronghui Ju,SuRan Wang,Yanlin Li,TingYu Liang,Wei Guo,Zhaoxuan Gong
标识
DOI:10.1007/s10278-024-01206-7
摘要

In the domain of medical image segmentation, traditional diffusion probabilistic models are hindered by local inductive biases stemming from convolutional operations, constraining their ability to model long-term dependencies and leading to inaccurate mask generation. Conversely, Transformer offers a remedy by obviating the local inductive biases inherent in convolutional operations, thereby enhancing segmentation precision. Currently, the integration of Transformer and convolution operations mainly occurs in two forms: nesting and stacking. However, both methods address the bias elimination at a relatively large granularity, failing to fully leverage the advantages of both approaches. To address this, this paper proposes a conditional diffusion segmentation model named TransDiffSeg, which combines Transformer with convolution operations from traditional diffusion models in a parallel manner. This approach eliminates the accumulated local inductive bias of convolution operations at a finer granularity within each layer. Additionally, an adaptive feature fusion block is employed to merge conditional semantic features and noise features, enhancing global semantic information and reducing the Transformer's sensitivity to noise features. To validate the impact of granularity in bias elimination on performance and the impact of Transformer in alleviating the accumulated local inductive biases of convolutional operations in diffusion probabilistic models, experiments are conducted on the AMOS22 dataset and BTCV dataset. Experimental results demonstrate that eliminating local inductive bias at a finer granularity significantly improves the segmentation performance of diffusion probabilistic models. Furthermore, the results confirm that the finer the granularity of bias elimination, the better the segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悠悠发布了新的文献求助10
刚刚
萝卜完成签到,获得积分10
刚刚
1秒前
CipherSage应助Lijunjie采纳,获得10
2秒前
阔达的寒松完成签到,获得积分10
2秒前
Efei发布了新的文献求助30
4秒前
平常幼萱完成签到,获得积分10
4秒前
希望天下0贩的0应助Saluzi采纳,获得10
4秒前
dddd发布了新的文献求助30
4秒前
可爱的函函应助竹子采纳,获得30
5秒前
隐形曼青应助纠结不纠结采纳,获得10
5秒前
今后应助耍酷的千愁采纳,获得10
6秒前
大湖玩家完成签到,获得积分10
6秒前
科研通AI6应助秋云山月采纳,获得10
7秒前
复杂数据线完成签到,获得积分10
7秒前
Hello应助小L采纳,获得10
7秒前
Hello应助111采纳,获得10
7秒前
ZZQ完成签到 ,获得积分20
8秒前
8秒前
Zyl完成签到 ,获得积分10
8秒前
8秒前
11秒前
罗霄山完成签到,获得积分10
12秒前
wanci应助清脆的书桃采纳,获得10
12秒前
陈艺鹏完成签到,获得积分10
13秒前
Lijunjie完成签到,获得积分10
13秒前
IBM完成签到,获得积分10
14秒前
14秒前
默默善愁发布了新的文献求助10
14秒前
15秒前
Lijunjie发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
李博士完成签到,获得积分20
16秒前
飘逸夜白发布了新的文献求助10
16秒前
17秒前
JamesPei应助复杂数据线采纳,获得10
18秒前
竹子发布了新的文献求助30
18秒前
向阳发布了新的文献求助20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588835
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14789060
捐赠科研通 4626566
什么是DOI,文献DOI怎么找? 2531974
邀请新用户注册赠送积分活动 1500561
关于科研通互助平台的介绍 1468343