TransDiffSeg: Transformer-Based Conditional Diffusion Segmentation Model for Abdominal Multi-Objective

粒度 分割 计算机科学 概率逻辑 归纳偏置 人工智能 模式识别(心理学) 变压器 数据挖掘 算法 机器学习 多任务学习 工程类 电气工程 系统工程 电压 任务(项目管理) 操作系统
作者
WenWen Gu,Guodong Zhang,Ronghui Ju,SuRan Wang,Yanlin Li,TingYu Liang,Wei Guo,Zhaoxuan Gong
标识
DOI:10.1007/s10278-024-01206-7
摘要

In the domain of medical image segmentation, traditional diffusion probabilistic models are hindered by local inductive biases stemming from convolutional operations, constraining their ability to model long-term dependencies and leading to inaccurate mask generation. Conversely, Transformer offers a remedy by obviating the local inductive biases inherent in convolutional operations, thereby enhancing segmentation precision. Currently, the integration of Transformer and convolution operations mainly occurs in two forms: nesting and stacking. However, both methods address the bias elimination at a relatively large granularity, failing to fully leverage the advantages of both approaches. To address this, this paper proposes a conditional diffusion segmentation model named TransDiffSeg, which combines Transformer with convolution operations from traditional diffusion models in a parallel manner. This approach eliminates the accumulated local inductive bias of convolution operations at a finer granularity within each layer. Additionally, an adaptive feature fusion block is employed to merge conditional semantic features and noise features, enhancing global semantic information and reducing the Transformer's sensitivity to noise features. To validate the impact of granularity in bias elimination on performance and the impact of Transformer in alleviating the accumulated local inductive biases of convolutional operations in diffusion probabilistic models, experiments are conducted on the AMOS22 dataset and BTCV dataset. Experimental results demonstrate that eliminating local inductive bias at a finer granularity significantly improves the segmentation performance of diffusion probabilistic models. Furthermore, the results confirm that the finer the granularity of bias elimination, the better the segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒙开心完成签到 ,获得积分10
刚刚
Akim应助北璃采纳,获得10
刚刚
修道院的豌豆完成签到 ,获得积分10
刚刚
雪花完成签到 ,获得积分10
1秒前
75986686完成签到,获得积分10
1秒前
ueue发布了新的文献求助10
1秒前
LYY完成签到,获得积分10
2秒前
小线团黑桃完成签到,获得积分10
2秒前
xxj完成签到 ,获得积分10
4秒前
TAO关闭了TAO文献求助
5秒前
糖葫芦完成签到,获得积分10
5秒前
sh131完成签到,获得积分10
5秒前
hawaii66完成签到 ,获得积分10
6秒前
朴实以松完成签到,获得积分10
6秒前
语恒完成签到,获得积分10
7秒前
鱼鱼片片完成签到,获得积分10
7秒前
7秒前
wh完成签到,获得积分10
8秒前
Mandarine完成签到,获得积分10
9秒前
过儿完成签到,获得积分10
9秒前
guoguo完成签到 ,获得积分10
10秒前
Jasper应助ueue采纳,获得10
10秒前
11秒前
咿呀呀嘿哟完成签到 ,获得积分20
11秒前
余杭村王小虎完成签到,获得积分10
11秒前
琉璃完成签到,获得积分10
12秒前
忆夕发布了新的文献求助10
13秒前
zygclwl完成签到,获得积分10
13秒前
ahai完成签到,获得积分10
13秒前
酷波er应助乔治采纳,获得10
13秒前
跳跃豆芽完成签到 ,获得积分10
13秒前
今后应助泽灵采纳,获得10
15秒前
chill1249完成签到,获得积分20
15秒前
zcious完成签到,获得积分10
16秒前
orixero应助z7采纳,获得10
16秒前
小蘑菇应助阿瑶与呆呆采纳,获得30
17秒前
办公的牛马完成签到,获得积分10
17秒前
兜里只有三块钱完成签到,获得积分10
18秒前
李安全发布了新的文献求助10
18秒前
慧喆完成签到 ,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950051
求助须知:如何正确求助?哪些是违规求助? 3495384
关于积分的说明 11076831
捐赠科研通 3225937
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867640
科研通“疑难数据库(出版商)”最低求助积分说明 800855