亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rectified Binary Network for Single-Image Super-Resolution

分辨率(逻辑) 二进制数 图像(数学) 计算机科学 人工智能 计算机视觉 数学 算术
作者
Jingwei Xin,Nannan Wang,Xinrui Jiang,Jie Li,Xiaoyu Wang,Xinbo Gao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3438432
摘要

Binary neural network (BNN) is an effective approach to reduce the memory usage and the computational complexity of full-precision convolutional neural networks (CNNs), which has been widely used in the field of deep learning. However, there are different properties between BNNs and real-valued models, making it difficult to draw on the experience of CNN composition to develop BNN. In this article, we study the application of binary network to the single-image super-resolution (SISR) task in which the network is trained for restoring original high-resolution (HR) images. Generally, the distribution of features in the network for SISR is more complex than those in recognition models for preserving the abundant image information, e.g., texture, color, and details. To enhance the representation ability of BNN, we explore a novel activation-rectified inference (ARI) module that achieves a more complete representation of features by combining observations from different quantitative perspectives. The activations are divided into several parts with different quantification intervals and are inferred independently. This allows the binary activations to retain more image detail and yield finer inference. In addition, we further propose an adaptive approximation estimator (AAE) for gradually learning the accurate gradient estimation interval in each layer to alleviate the optimization difficulty. Experiments conducted on several benchmarks show that our approach is able to learn a binary SISR model with superior performance over the state-of-the-art methods. The code will be released at https://github.com/jwxintt/Rectified-BSR.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助夜云采纳,获得10
3秒前
13秒前
39秒前
夜云发布了新的文献求助10
44秒前
笑点低的牛二完成签到 ,获得积分10
53秒前
54秒前
taku完成签到 ,获得积分10
1分钟前
Shicheng完成签到,获得积分10
1分钟前
在水一方应助胖哥采纳,获得10
1分钟前
2分钟前
......发布了新的文献求助10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
万能图书馆应助liuliu采纳,获得10
2分钟前
2分钟前
3分钟前
简单喀秋莎完成签到,获得积分10
3分钟前
华仔应助阿巴阿巴采纳,获得10
3分钟前
明亮灭绝完成签到,获得积分10
3分钟前
prigogin完成签到,获得积分10
4分钟前
4分钟前
4分钟前
zxh656691发布了新的文献求助10
5分钟前
胖小羊完成签到 ,获得积分10
6分钟前
liuliu完成签到,获得积分10
6分钟前
调研昵称发布了新的文献求助10
6分钟前
7分钟前
liuliu发布了新的文献求助10
7分钟前
领导范儿应助hyhyhyhy采纳,获得10
7分钟前
7分钟前
Nicho完成签到,获得积分10
7分钟前
Nicho发布了新的文献求助10
7分钟前
老孟完成签到,获得积分10
7分钟前
狄绮完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
星辰大海应助科研通管家采纳,获得10
8分钟前
田様应助科研通管家采纳,获得10
8分钟前
安安完成签到 ,获得积分10
8分钟前
俭朴蜜蜂完成签到 ,获得积分10
9分钟前
HelloWorld完成签到,获得积分10
9分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379134
求助须知:如何正确求助?哪些是违规求助? 2994646
关于积分的说明 8759879
捐赠科研通 2679194
什么是DOI,文献DOI怎么找? 1467566
科研通“疑难数据库(出版商)”最低求助积分说明 678713
邀请新用户注册赠送积分活动 670412