SYSTCM: A systemic web platform for objective identification of pharmacological effects based on interplay of “traditional Chinese Medicine-components-targets”

鉴定(生物学) 计算机科学 中医药 Web应用程序 计算生物学 医学 万维网 生物 替代医学 病理 植物
作者
Zewen Wang,Mengqi Huo,Liansheng Qiao,Yanjiang Qiao,Yanling Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:179: 108878-108878
标识
DOI:10.1016/j.compbiomed.2024.108878
摘要

Mechanism analysis is essential for the use and promotion of Traditional Chinese Medicine (TCM). Traditional methods of network analysis relying on expert experience lack an explanatory framework, prompting the application of deep learning and machine learning for objective identification of TCM pharmacological effects. A dataset was used to construct an interacted network graph between 424 molecular descriptors and 465 pharmacological targets to represent the relationship between components and pharmacological effects. Subsequently, the optimal identification model of pharmacological effects (IPE) was established through convolution neural networks of GoogLeNet structure. The AUC values are greater than 0.8, MCC values are greater than 0.7, and ACC values are greater than 0.85 across various test datasets. Subsequently, 18 recognition models of TCM efficacy (RTE) were created using support vector machines (SVM). Integration of pharmacological effects and efficacies led to the development of the systemic web platform for identification of pharmacological effects (SYSTCM). The platform, comprising 70,961 terms, including 636 Traditional Chinese Medicines (TCMs), 8190 components, 40 pharmacological effects, and 18 efficacies. Through the SYSTCM platform, (1) Total 100 components were predicted from TCMs with anti-inflammatory pharmacological effects. (2) The pharmacological effects of complete constituents were predicted from Coptidis Rhizoma (Huang Lian). (3) The principal components, pharmacological effects, and efficacies were elucidated from Salviae Miltiorrhizae radix et rhizome (Dan Shen). SYSTCM addresses subjectivity in pharmacological effect determination, offering a potential avenue for advancing TCM drug development and clinical applications. Access SYSTCM at http://systcm.cn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
文献下载中完成签到,获得积分10
3秒前
3秒前
4秒前
你hao完成签到,获得积分10
4秒前
认真元槐发布了新的文献求助10
5秒前
5秒前
怦怦应助梦汐moxi采纳,获得10
5秒前
无花果应助rr采纳,获得10
6秒前
泽凡发布了新的文献求助30
6秒前
苟子发布了新的文献求助10
7秒前
香蕉爆米花完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
94line发布了新的文献求助10
10秒前
肉肉发布了新的文献求助10
11秒前
研友_850aeZ完成签到,获得积分10
11秒前
威威发布了新的文献求助10
13秒前
尛瞐慶成发布了新的文献求助10
14秒前
123应助HEROTREE采纳,获得10
15秒前
杨旺完成签到 ,获得积分10
15秒前
整齐的井完成签到 ,获得积分10
15秒前
研友_VZG7GZ应助小脸红扑扑采纳,获得10
15秒前
SciGPT应助hugeng采纳,获得10
18秒前
英俊的铭应助静香采纳,获得10
18秒前
18秒前
斯文败类应助肉肉采纳,获得10
19秒前
alicia发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
脑洞疼应助juan123_wu采纳,获得10
21秒前
mumu发布了新的文献求助10
22秒前
SCH_zhu完成签到,获得积分10
23秒前
23秒前
阿仁不想搞科研完成签到 ,获得积分10
24秒前
HEROTREE发布了新的文献求助10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313305
求助须知:如何正确求助?哪些是违规求助? 2945741
关于积分的说明 8526806
捐赠科研通 2621466
什么是DOI,文献DOI怎么找? 1433588
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650585