LLM-Enhanced Multi-Teacher Knowledge Distillation for Modality-Incomplete Emotion Recognition in Daily Healthcare

模态(人机交互) 计算机科学 医疗保健 蒸馏 人工智能 情绪识别 知识管理 人机交互 自然语言处理 化学 有机化学 经济 经济增长
作者
Yuzhe Zhang,Huan Liu,Yang Xiao,Mohammed Amoon,Dalin Zhang,Di Wang,Shusen Yang,Chai Quek
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3470338
摘要

The critical importance of monitoring and recognizing human emotional states in healthcare has led to a surge in proposals for EEG-based multimodal emotion recognition in recent years. However, practical challenges arise in acquiring EEG signals in daily healthcare settings due to stringent data acquisition conditions, resulting in the issue of incomplete modalities. Existing studies have turned to knowledge distillation as a means to mitigate this problem by transferring knowledge from multimodal networks to unimodal ones. However, these methods are constrained by the use of a single teacher model to transfer integrated feature extraction knowledge, particularly concerning spatial and temporal features in EEG data. To address this limitation, we propose a multi-teacher knowledge distillation framework enhanced with a Large Language Model (LLM), aimed at facilitating effective feature learning in the student network by transferring knowledge of extracting integrated features. Specifically, we employ an LLM as the teacher for extracting temporal features and a graph convolutional neural network for extracting spatial features. To further enhance knowledge distillation, we introduce causal masking and a confidence indicator into the LLM to facilitate the transfer of the most discriminative features. Extensive testing on the DEAP and MAHNOB-HCI datasets demonstrates that our model outperforms existing methods in the modality-incomplete scenario. This study underscores the potential application of large models in this field. The code is publicly available at https://github.com/yuzhezhangEEG/LM-KD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Y123采纳,获得10
1秒前
Akim应助guoxihan采纳,获得10
2秒前
Yang发布了新的文献求助10
2秒前
111完成签到,获得积分10
3秒前
情怀应助柔弱亦寒采纳,获得10
4秒前
田様应助鹏哥爱科研采纳,获得10
5秒前
顾矜应助搁浅采纳,获得10
5秒前
飞飞鱼完成签到,获得积分10
6秒前
10秒前
11秒前
郭富县城完成签到,获得积分10
11秒前
SSSDDDYYY发布了新的文献求助10
11秒前
11秒前
12秒前
空白掉落完成签到 ,获得积分10
13秒前
15秒前
Y123发布了新的文献求助10
15秒前
sissi应助狗子爱吃桃桃采纳,获得30
15秒前
李八八完成签到,获得积分10
16秒前
冷酷的柜门完成签到,获得积分10
17秒前
柔弱亦寒发布了新的文献求助10
18秒前
18秒前
18秒前
星辰大海应助ido采纳,获得10
18秒前
人木发布了新的文献求助10
21秒前
21秒前
22秒前
领导范儿应助梨涡采纳,获得10
22秒前
传奇3应助Yang采纳,获得10
22秒前
姜忆霜发布了新的文献求助10
22秒前
啵赞的龟丝儿完成签到,获得积分10
23秒前
24秒前
海洋调完成签到,获得积分10
24秒前
25秒前
27秒前
传奇3应助倪倪采纳,获得10
27秒前
情怀应助危机的雨梅采纳,获得10
27秒前
28秒前
29秒前
李爱国应助科研民工采纳,获得10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306895
求助须知:如何正确求助?哪些是违规求助? 2940756
关于积分的说明 8498339
捐赠科研通 2614923
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648297