GIJA:Enhanced geyser‐inspired Jaya algorithm for task scheduling optimization in cloud computing

云计算 计算机科学 分布式计算 调度(生产过程) 算法 数学优化 操作系统 数学
作者
Laith Abualigah,Ahmad MohdAziz Hussein,Mohammad H. Almomani,Raed Abu Zitar,Mohammad Sh. Daoud,Hazem Migdady,Ahmed Ibrahim Alzahrani,Ayed Alwadain
出处
期刊:Transactions on Emerging Telecommunications Technologies 卷期号:35 (7)
标识
DOI:10.1002/ett.5019
摘要

Abstract Task scheduling optimization plays a pivotal role in enhancing the efficiency and performance of cloud computing systems. In this article, we introduce GIJA (Geyser‐inspired Jaya Algorithm), a novel optimization approach tailored for task scheduling in cloud computing environments. GIJA integrates the principles of the Geyser‐inspired algorithm with the Jaya algorithm, augmented by a Levy Flight mechanism, to address the complexities of task scheduling optimization. The motivation for this research stems from the increasing demand for efficient resource utilization and task management in cloud computing, driven by the proliferation of Internet of Things (IoT) devices and the growing reliance on cloud‐based services. Traditional task scheduling algorithms often face challenges in handling dynamic workloads, heterogeneous resources, and varying performance objectives, necessitating innovative optimization techniques. GIJA leverages the eruptive dynamics of geysers, inspired by nature's efficiency in channeling resources, to guide task scheduling decisions. By combining this Geyser‐inspired approach with the simplicity and effectiveness of the Jaya algorithm, GIJA offers a robust optimization framework capable of adapting to diverse cloud computing environments. Additionally, the integration of the Levy Flight mechanism introduces stochasticity into the optimization process, enabling the exploration of solution spaces and accelerating convergence. To evaluate the efficacy of GIJA, extensive experiments are conducted using synthetic and real‐world datasets representative of cloud computing workloads. Comparative analyses against existing task scheduling algorithms, including AOA, RSA, DMOA, PDOA, LPO, SCO, GIA, and GIAA, demonstrate the superior performance of GIJA in terms of solution quality, convergence rate, diversity, and robustness. The findings of GIJA provide a promising solution quality for addressing the complexities of task scheduling in cloud environments (95%), with implications for enhancing system performance, scalability, and resource utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助榞榞采纳,获得10
刚刚
天桂星发布了新的文献求助10
刚刚
梁大海发布了新的文献求助10
1秒前
Son4904应助谭平采纳,获得10
1秒前
专注的嵩发布了新的文献求助30
3秒前
3秒前
3秒前
小蘑菇应助lizh187采纳,获得10
3秒前
4秒前
4秒前
烟花应助无辜的大雁采纳,获得10
4秒前
清欢完成签到,获得积分10
5秒前
5秒前
打打应助songvv采纳,获得10
5秒前
快乐爱斯米完成签到,获得积分10
6秒前
6秒前
yangyang发布了新的文献求助10
6秒前
莫里耶完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
诸葛钢铁发布了新的文献求助10
8秒前
劲秉应助虚幻沛菡采纳,获得50
8秒前
9秒前
naturehome发布了新的文献求助10
10秒前
虎虎生威完成签到,获得积分10
10秒前
10秒前
HAO完成签到,获得积分10
11秒前
11秒前
暴躁的白容完成签到,获得积分10
12秒前
cc发布了新的文献求助10
12秒前
qc完成签到,获得积分10
13秒前
十一玮应助songvv采纳,获得10
14秒前
14秒前
赘婿应助WUHUDASM采纳,获得10
14秒前
ffx完成签到,获得积分10
14秒前
15秒前
15秒前
史迪仔崽发布了新的文献求助10
15秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470540
求助须知:如何正确求助?哪些是违规求助? 3063510
关于积分的说明 9083726
捐赠科研通 2753934
什么是DOI,文献DOI怎么找? 1511152
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698178