Transformer-Based Weakly Supervised Learning for Whole Slide Lung Cancer Image Classification

人工智能 计算机科学 肺癌 上下文图像分类 模式识别(心理学) 计算机视觉 医学 图像(数学) 病理
作者
Jianpeng An,Yong Wang,Qing Cai,Gang Zhao,Stephan Dooper,Geert Litjens,Zhongke Gao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/jbhi.2024.3425434
摘要

Image analysis can play an important role in supporting histopathological diagnoses of lung cancer, with deep learning methods already achieving remarkable results. However, due to the large scale of whole-slide images (WSIs), creating manual pixel-wise annotations from expert pathologists is expensive and time-consuming. In addition, the heterogeneity of tumors and similarities in the morphological phenotype of tumor subtypes have caused inter-observer variability in annotations, which limits optimal performance. Effective use of weak labels could potentially alleviate these issues. In this paper, we propose a two-stage transformer-based weakly supervised learning framework called Simple Shuffle-Remix Vision Transformer (SSRViT). Firstly, we introduce a Shuffle-Remix Vision Transformer (SRViT) to retrieve discriminative local tokens and extract effective representative features. Then, the token features are selected and aggregated to generate sparse representations of WSIs, which are fed into a simple transformer-based classifier (SViT) for slide-level prediction. Experimental results demonstrate that the performance of our proposed SSRViT is significantly improved compared with other state-of-the-art methods in discriminating between adenocarcinoma, pulmonary sclerosing pneumocytoma and normal lung tissue (accuracy of 96.9% and AUC of 99.6%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYC发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
ccm应助吱吱采纳,获得10
1秒前
1秒前
LINCHEN发布了新的文献求助10
1秒前
bdJ发布了新的文献求助10
1秒前
2秒前
3秒前
冷傲新柔发布了新的文献求助10
3秒前
大熊完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
樊家圣完成签到 ,获得积分10
4秒前
4秒前
4秒前
宓沂发布了新的文献求助20
5秒前
花花花海完成签到,获得积分10
5秒前
spz150完成签到,获得积分10
5秒前
fengge完成签到,获得积分10
5秒前
蔚蓝的天空完成签到 ,获得积分10
5秒前
6秒前
6秒前
晴qq发布了新的文献求助10
6秒前
ZW完成签到,获得积分10
6秒前
科研通AI6应助666采纳,获得10
7秒前
Lllll发布了新的文献求助10
7秒前
清新的问枫完成签到,获得积分10
7秒前
8秒前
英吉利25发布了新的文献求助10
8秒前
8秒前
233火发布了新的文献求助10
8秒前
11完成签到 ,获得积分10
8秒前
麦子发布了新的文献求助30
8秒前
Quhang发布了新的文献求助10
8秒前
小鸽发布了新的文献求助30
8秒前
灵灵妖发布了新的文献求助10
9秒前
yuan发布了新的文献求助10
9秒前
9秒前
qiqi完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647375
求助须知:如何正确求助?哪些是违规求助? 4773416
关于积分的说明 15039107
捐赠科研通 4806115
什么是DOI,文献DOI怎么找? 2570108
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486055