Dynamic assessment of slope stability based on multi‐source monitoring data and ensemble learning approaches: A case study of Jiuxianping landslide

集成学习 超参数 支持向量机 随机森林 人工智能 机器学习 决策树 集合预报 计算机科学 山崩 Boosting(机器学习) 理论(学习稳定性) 回归 算法 数据挖掘 数学 地质学 统计 岩土工程
作者
Wenhan Xu,Yanfei Kang,Lichuan Chen,Luqi Wang,Changbing Qin,Liting Zhang,Dan Liang,Chongzhi Wu,Wengang Zhang
出处
期刊:Geological Journal [Wiley]
被引量:2
标识
DOI:10.1002/gj.4605
摘要

Accurate assessment of slope stability is the most important task in geological disaster prevention and control. This study developed an ensemble learning approach based on stacking strategy and eight commonly used machine learning (ML) models, for exploring the feasibility of the factor of safety (FS) prediction using dynamic multi-source monitoring data of slopes and landslides. Based on long-term and dynamic field monitoring and numerical calculation, a dataset for constructing the FS prediction model for the Jiuxianping landslide was established. The dataset includes five types of monitoring data namely rainfall, reservoir water level, groundwater level, surface displacement and deep displacement for a total of nine features, and one label FS. Four regularized regression models, kernel ridge regression (KRR), lasso, elastic net and support vector regression (SVR), as well as four ensemble learning models, random forest (RF), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost) and light gradient boosting machine (LightGBM), were adopted to obtain the nonlinear association between the nine features and the label FS, respectively. Based on five repeated 5-fold cross-validation (CV) and successive halving (SH) hyperparameter searching method, the hyperparameters of each model were determined, and the prediction effects of each optimal model were compared. The results show that the ensemble learning models outperform the common regression models. Furthermore, with the help of the stacking ensemble learning thinking, four excellent ensemble models were combined, and the final stacking ensemble learning model was used to predict the FS of the Jiuxianping landslide. The results indicate that the stacking model has better robustness and generalization performance. Besides, the feature relative importance of four ensemble learning models was analysed, for enhancing the interpretability of ML models and pointing out the research direction of feature engineering in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助miaoww采纳,获得10
刚刚
DXXX完成签到,获得积分20
刚刚
刚刚
刚刚
刚刚
character577完成签到,获得积分10
刚刚
王汉韬完成签到,获得积分20
刚刚
刚刚
文泽完成签到,获得积分10
1秒前
hu970发布了新的文献求助10
1秒前
震动的听枫完成签到,获得积分10
1秒前
丘比特应助wzg666采纳,获得10
1秒前
1秒前
不二完成签到,获得积分10
1秒前
璇璇完成签到 ,获得积分10
2秒前
深情安青应助郑开司09采纳,获得10
2秒前
2秒前
3秒前
杨杨杨发布了新的文献求助10
3秒前
AA发布了新的文献求助10
3秒前
哎呀妈呀发布了新的文献求助10
3秒前
3秒前
活力雁枫完成签到,获得积分10
4秒前
封尘逸动完成签到,获得积分10
4秒前
Khr1stINK发布了新的文献求助10
5秒前
Water103发布了新的文献求助10
5秒前
5秒前
彩色的德地完成签到,获得积分10
5秒前
ddd完成签到,获得积分10
5秒前
5秒前
DONGJUN发布了新的文献求助10
5秒前
6秒前
6秒前
岁月轮回完成签到,获得积分10
6秒前
6秒前
坚强乌龟发布了新的文献求助10
6秒前
坚强的广山完成签到,获得积分0
6秒前
甜甜秋荷完成签到,获得积分10
7秒前
lbx完成签到,获得积分10
7秒前
Promise发布了新的文献求助10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672