Dynamic assessment of slope stability based on multi‐source monitoring data and ensemble learning approaches: A case study of Jiuxianping landslide

集成学习 超参数 支持向量机 随机森林 人工智能 机器学习 决策树 集合预报 计算机科学 山崩 Boosting(机器学习) 理论(学习稳定性) 回归 算法 数据挖掘 数学 地质学 统计 岩土工程
作者
Wenhan Xu,Yanfei Kang,Lichuan Chen,Luqi Wang,Changbing Qin,Liting Zhang,Dan Liang,Chongzhi Wu,Wengang Zhang
出处
期刊:Geological Journal [Wiley]
被引量:2
标识
DOI:10.1002/gj.4605
摘要

Accurate assessment of slope stability is the most important task in geological disaster prevention and control. This study developed an ensemble learning approach based on stacking strategy and eight commonly used machine learning (ML) models, for exploring the feasibility of the factor of safety (FS) prediction using dynamic multi-source monitoring data of slopes and landslides. Based on long-term and dynamic field monitoring and numerical calculation, a dataset for constructing the FS prediction model for the Jiuxianping landslide was established. The dataset includes five types of monitoring data namely rainfall, reservoir water level, groundwater level, surface displacement and deep displacement for a total of nine features, and one label FS. Four regularized regression models, kernel ridge regression (KRR), lasso, elastic net and support vector regression (SVR), as well as four ensemble learning models, random forest (RF), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost) and light gradient boosting machine (LightGBM), were adopted to obtain the nonlinear association between the nine features and the label FS, respectively. Based on five repeated 5-fold cross-validation (CV) and successive halving (SH) hyperparameter searching method, the hyperparameters of each model were determined, and the prediction effects of each optimal model were compared. The results show that the ensemble learning models outperform the common regression models. Furthermore, with the help of the stacking ensemble learning thinking, four excellent ensemble models were combined, and the final stacking ensemble learning model was used to predict the FS of the Jiuxianping landslide. The results indicate that the stacking model has better robustness and generalization performance. Besides, the feature relative importance of four ensemble learning models was analysed, for enhancing the interpretability of ML models and pointing out the research direction of feature engineering in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大橙子发布了新的文献求助10
1秒前
张牧之完成签到 ,获得积分10
3秒前
冷冷暴力完成签到,获得积分10
5秒前
YYY完成签到,获得积分10
5秒前
5秒前
gujian完成签到 ,获得积分10
8秒前
帅气的秘密完成签到 ,获得积分10
9秒前
自然函发布了新的文献求助10
13秒前
冰冰双双完成签到,获得积分10
13秒前
开心夏旋完成签到 ,获得积分0
15秒前
我要读博士完成签到 ,获得积分10
18秒前
活泼的大船完成签到,获得积分10
18秒前
AFF完成签到,获得积分10
19秒前
20秒前
无私小小完成签到,获得积分10
21秒前
随心所欲完成签到 ,获得积分10
22秒前
润润轩轩完成签到 ,获得积分10
23秒前
CodeCraft应助大橙子采纳,获得10
23秒前
ZR完成签到,获得积分10
24秒前
magictoo完成签到,获得积分10
24秒前
陈昊发布了新的文献求助10
25秒前
zhangliangfu完成签到 ,获得积分10
25秒前
金石为开完成签到,获得积分10
25秒前
王QQ完成签到 ,获得积分10
27秒前
唐唐完成签到 ,获得积分10
31秒前
最棒哒完成签到 ,获得积分10
31秒前
鸣鸣完成签到,获得积分10
32秒前
123321完成签到 ,获得积分10
33秒前
卓若之完成签到 ,获得积分10
34秒前
苯二氮卓完成签到,获得积分10
35秒前
温暖完成签到 ,获得积分10
37秒前
mojomars完成签到,获得积分10
37秒前
时尚雨兰完成签到,获得积分0
38秒前
一叶知秋完成签到,获得积分10
40秒前
叶123完成签到,获得积分10
41秒前
量子星尘发布了新的文献求助10
42秒前
Minicoper发布了新的文献求助10
42秒前
背书强完成签到 ,获得积分10
43秒前
淡然以柳完成签到 ,获得积分10
45秒前
dolabmu完成签到 ,获得积分10
48秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022