Dynamic assessment of slope stability based on multi‐source monitoring data and ensemble learning approaches: A case study of Jiuxianping landslide

集成学习 超参数 支持向量机 随机森林 人工智能 机器学习 决策树 集合预报 计算机科学 山崩 Boosting(机器学习) 理论(学习稳定性) 回归 算法 数据挖掘 数学 地质学 统计 岩土工程
作者
Wenhan Xu,Yanfei Kang,Lichuan Chen,Luqi Wang,Changbing Qin,Liting Zhang,Dan Liang,Chongzhi Wu,Wengang Zhang
出处
期刊:Geological Journal [Wiley]
被引量:2
标识
DOI:10.1002/gj.4605
摘要

Accurate assessment of slope stability is the most important task in geological disaster prevention and control. This study developed an ensemble learning approach based on stacking strategy and eight commonly used machine learning (ML) models, for exploring the feasibility of the factor of safety (FS) prediction using dynamic multi-source monitoring data of slopes and landslides. Based on long-term and dynamic field monitoring and numerical calculation, a dataset for constructing the FS prediction model for the Jiuxianping landslide was established. The dataset includes five types of monitoring data namely rainfall, reservoir water level, groundwater level, surface displacement and deep displacement for a total of nine features, and one label FS. Four regularized regression models, kernel ridge regression (KRR), lasso, elastic net and support vector regression (SVR), as well as four ensemble learning models, random forest (RF), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost) and light gradient boosting machine (LightGBM), were adopted to obtain the nonlinear association between the nine features and the label FS, respectively. Based on five repeated 5-fold cross-validation (CV) and successive halving (SH) hyperparameter searching method, the hyperparameters of each model were determined, and the prediction effects of each optimal model were compared. The results show that the ensemble learning models outperform the common regression models. Furthermore, with the help of the stacking ensemble learning thinking, four excellent ensemble models were combined, and the final stacking ensemble learning model was used to predict the FS of the Jiuxianping landslide. The results indicate that the stacking model has better robustness and generalization performance. Besides, the feature relative importance of four ensemble learning models was analysed, for enhancing the interpretability of ML models and pointing out the research direction of feature engineering in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气南珍完成签到,获得积分10
刚刚
优雅莞完成签到,获得积分0
7秒前
谦让的含海完成签到,获得积分10
7秒前
辛勤的囧完成签到,获得积分10
19秒前
MC123完成签到,获得积分10
20秒前
wsafhgfjb完成签到,获得积分10
21秒前
24秒前
黄启烽完成签到,获得积分10
32秒前
文献属于所有科研人关注了科研通微信公众号
37秒前
啦啦啦啦啦完成签到,获得积分10
38秒前
40秒前
凌泉完成签到 ,获得积分10
41秒前
别有乾坤完成签到 ,获得积分10
41秒前
qaplay完成签到 ,获得积分0
42秒前
阿然完成签到,获得积分10
45秒前
天晴完成签到,获得积分10
48秒前
是真的完成签到 ,获得积分10
51秒前
yanmh完成签到,获得积分10
52秒前
kmzzy完成签到 ,获得积分10
57秒前
大汤圆圆完成签到 ,获得积分10
1分钟前
Gavin完成签到,获得积分10
1分钟前
嗡嗡完成签到,获得积分10
1分钟前
壮观的谷冬完成签到 ,获得积分0
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
活泼的南风完成签到,获得积分10
1分钟前
ZSZ完成签到,获得积分10
1分钟前
wei发布了新的文献求助10
1分钟前
是三石啊完成签到 ,获得积分10
1分钟前
xhsz1111完成签到 ,获得积分10
1分钟前
sweet完成签到 ,获得积分10
1分钟前
一一完成签到 ,获得积分10
1分钟前
zz321完成签到,获得积分10
1分钟前
chen完成签到,获得积分10
1分钟前
共享精神应助wei采纳,获得10
1分钟前
万能图书馆应助lzy303886采纳,获得10
1分钟前
星辉的斑斓完成签到 ,获得积分10
1分钟前
SerCheung完成签到,获得积分10
1分钟前
Brave发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689486
捐赠科研通 4591896
什么是DOI,文献DOI怎么找? 2519388
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463136