清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dynamic assessment of slope stability based on multi‐source monitoring data and ensemble learning approaches: A case study of Jiuxianping landslide

集成学习 超参数 支持向量机 随机森林 人工智能 机器学习 决策树 集合预报 计算机科学 山崩 Boosting(机器学习) 理论(学习稳定性) 回归 算法 数据挖掘 数学 地质学 统计 岩土工程
作者
Wenhan Xu,Yanfei Kang,Lichuan Chen,Luqi Wang,Changbing Qin,Liting Zhang,Dan Liang,Chongzhi Wu,Wengang Zhang
出处
期刊:Geological Journal [Wiley]
被引量:2
标识
DOI:10.1002/gj.4605
摘要

Accurate assessment of slope stability is the most important task in geological disaster prevention and control. This study developed an ensemble learning approach based on stacking strategy and eight commonly used machine learning (ML) models, for exploring the feasibility of the factor of safety (FS) prediction using dynamic multi-source monitoring data of slopes and landslides. Based on long-term and dynamic field monitoring and numerical calculation, a dataset for constructing the FS prediction model for the Jiuxianping landslide was established. The dataset includes five types of monitoring data namely rainfall, reservoir water level, groundwater level, surface displacement and deep displacement for a total of nine features, and one label FS. Four regularized regression models, kernel ridge regression (KRR), lasso, elastic net and support vector regression (SVR), as well as four ensemble learning models, random forest (RF), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost) and light gradient boosting machine (LightGBM), were adopted to obtain the nonlinear association between the nine features and the label FS, respectively. Based on five repeated 5-fold cross-validation (CV) and successive halving (SH) hyperparameter searching method, the hyperparameters of each model were determined, and the prediction effects of each optimal model were compared. The results show that the ensemble learning models outperform the common regression models. Furthermore, with the help of the stacking ensemble learning thinking, four excellent ensemble models were combined, and the final stacking ensemble learning model was used to predict the FS of the Jiuxianping landslide. The results indicate that the stacking model has better robustness and generalization performance. Besides, the feature relative importance of four ensemble learning models was analysed, for enhancing the interpretability of ML models and pointing out the research direction of feature engineering in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
32429606完成签到 ,获得积分10
1秒前
10秒前
想游泳的鹰完成签到,获得积分10
12秒前
14秒前
18秒前
六一儿童节完成签到 ,获得积分10
22秒前
Una完成签到,获得积分10
23秒前
Dong完成签到 ,获得积分10
25秒前
史克珍香完成签到 ,获得积分10
28秒前
huanghe完成签到,获得积分10
30秒前
取法乎上完成签到 ,获得积分10
32秒前
徐团伟完成签到 ,获得积分10
32秒前
不辣的完成签到 ,获得积分10
43秒前
扶我起来写论文完成签到 ,获得积分10
48秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
红茸茸羊完成签到 ,获得积分10
53秒前
属实有点拉胯完成签到 ,获得积分10
55秒前
57秒前
DduYy完成签到,获得积分10
1分钟前
朴实乐天完成签到,获得积分10
1分钟前
跳跃的鹏飞完成签到 ,获得积分10
1分钟前
小悟空的美好年华完成签到 ,获得积分10
1分钟前
RYAN完成签到 ,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
1分钟前
Balance Man完成签到 ,获得积分10
1分钟前
隐形曼青应助Ggap1采纳,获得10
1分钟前
小余同学发布了新的文献求助10
1分钟前
weiweiwu12完成签到,获得积分10
2分钟前
青出于蓝蔡完成签到,获得积分10
2分钟前
满意机器猫完成签到 ,获得积分10
2分钟前
霜二完成签到 ,获得积分10
2分钟前
AZN完成签到 ,获得积分10
2分钟前
姆姆没买完成签到 ,获得积分10
2分钟前
今后应助阿尔法贝塔采纳,获得10
2分钟前
charih完成签到 ,获得积分10
2分钟前
陌上之心完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
宇文雨文完成签到 ,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968532
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167309
捐赠科研通 3248700
什么是DOI,文献DOI怎么找? 1794453
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664