已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic assessment of slope stability based on multi‐source monitoring data and ensemble learning approaches: A case study of Jiuxianping landslide

集成学习 超参数 支持向量机 随机森林 人工智能 机器学习 决策树 集合预报 计算机科学 山崩 Boosting(机器学习) 理论(学习稳定性) 回归 算法 数据挖掘 数学 地质学 统计 岩土工程
作者
Wenhan Xu,Yanfei Kang,Lichuan Chen,Luqi Wang,Changbing Qin,Liting Zhang,Dan Liang,Chongzhi Wu,Wengang Zhang
出处
期刊:Geological Journal [Wiley]
被引量:2
标识
DOI:10.1002/gj.4605
摘要

Accurate assessment of slope stability is the most important task in geological disaster prevention and control. This study developed an ensemble learning approach based on stacking strategy and eight commonly used machine learning (ML) models, for exploring the feasibility of the factor of safety (FS) prediction using dynamic multi-source monitoring data of slopes and landslides. Based on long-term and dynamic field monitoring and numerical calculation, a dataset for constructing the FS prediction model for the Jiuxianping landslide was established. The dataset includes five types of monitoring data namely rainfall, reservoir water level, groundwater level, surface displacement and deep displacement for a total of nine features, and one label FS. Four regularized regression models, kernel ridge regression (KRR), lasso, elastic net and support vector regression (SVR), as well as four ensemble learning models, random forest (RF), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost) and light gradient boosting machine (LightGBM), were adopted to obtain the nonlinear association between the nine features and the label FS, respectively. Based on five repeated 5-fold cross-validation (CV) and successive halving (SH) hyperparameter searching method, the hyperparameters of each model were determined, and the prediction effects of each optimal model were compared. The results show that the ensemble learning models outperform the common regression models. Furthermore, with the help of the stacking ensemble learning thinking, four excellent ensemble models were combined, and the final stacking ensemble learning model was used to predict the FS of the Jiuxianping landslide. The results indicate that the stacking model has better robustness and generalization performance. Besides, the feature relative importance of four ensemble learning models was analysed, for enhancing the interpretability of ML models and pointing out the research direction of feature engineering in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
handsomeboy完成签到,获得积分10
1秒前
江月123完成签到 ,获得积分10
1秒前
2秒前
大模型应助爽朗雨后风采纳,获得10
2秒前
hangfengzi完成签到,获得积分0
2秒前
6秒前
7秒前
handsomeboy发布了新的文献求助10
7秒前
黙宇循光完成签到 ,获得积分10
7秒前
我是老大应助繁荣的勒采纳,获得30
7秒前
10秒前
安静的瑾瑜完成签到 ,获得积分10
12秒前
Siren发布了新的文献求助30
13秒前
HY发布了新的文献求助10
13秒前
小张不在完成签到,获得积分10
14秒前
大方的火龙果完成签到 ,获得积分10
18秒前
JoeyLee完成签到,获得积分10
19秒前
Jy完成签到 ,获得积分10
19秒前
1111完成签到 ,获得积分10
19秒前
Veronica完成签到,获得积分10
21秒前
岳小龙完成签到 ,获得积分10
22秒前
小马甲应助爽朗雨后风采纳,获得10
24秒前
万能图书馆应助JoeyLee采纳,获得10
26秒前
27秒前
27秒前
要文献啊完成签到 ,获得积分10
29秒前
Jemry完成签到,获得积分20
31秒前
HuLL发布了新的文献求助10
32秒前
HY发布了新的文献求助10
34秒前
俭朴的猫咪完成签到,获得积分10
39秒前
46秒前
江南之南完成签到 ,获得积分10
49秒前
Tying完成签到 ,获得积分10
50秒前
别信同学完成签到 ,获得积分10
57秒前
大个应助pylchm采纳,获得10
1分钟前
HTniconico完成签到 ,获得积分10
1分钟前
华仔应助HTniconico采纳,获得10
1分钟前
1364135702完成签到 ,获得积分10
1分钟前
益笙鸿老板完成签到 ,获得积分10
1分钟前
英俊的铭应助zzzy采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310983
求助须知:如何正确求助?哪些是违规求助? 2943826
关于积分的说明 8516538
捐赠科研通 2619121
什么是DOI,文献DOI怎么找? 1432072
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649802