Dynamic assessment of slope stability based on multi‐source monitoring data and ensemble learning approaches: A case study of Jiuxianping landslide

集成学习 超参数 支持向量机 随机森林 人工智能 机器学习 决策树 集合预报 计算机科学 山崩 Boosting(机器学习) 理论(学习稳定性) 回归 算法 数据挖掘 数学 地质学 统计 岩土工程
作者
Wenhan Xu,Yanfei Kang,Lichuan Chen,Luqi Wang,Changbing Qin,Liting Zhang,Dan Liang,Chongzhi Wu,Wengang Zhang
出处
期刊:Geological Journal [Wiley]
被引量:2
标识
DOI:10.1002/gj.4605
摘要

Accurate assessment of slope stability is the most important task in geological disaster prevention and control. This study developed an ensemble learning approach based on stacking strategy and eight commonly used machine learning (ML) models, for exploring the feasibility of the factor of safety (FS) prediction using dynamic multi-source monitoring data of slopes and landslides. Based on long-term and dynamic field monitoring and numerical calculation, a dataset for constructing the FS prediction model for the Jiuxianping landslide was established. The dataset includes five types of monitoring data namely rainfall, reservoir water level, groundwater level, surface displacement and deep displacement for a total of nine features, and one label FS. Four regularized regression models, kernel ridge regression (KRR), lasso, elastic net and support vector regression (SVR), as well as four ensemble learning models, random forest (RF), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost) and light gradient boosting machine (LightGBM), were adopted to obtain the nonlinear association between the nine features and the label FS, respectively. Based on five repeated 5-fold cross-validation (CV) and successive halving (SH) hyperparameter searching method, the hyperparameters of each model were determined, and the prediction effects of each optimal model were compared. The results show that the ensemble learning models outperform the common regression models. Furthermore, with the help of the stacking ensemble learning thinking, four excellent ensemble models were combined, and the final stacking ensemble learning model was used to predict the FS of the Jiuxianping landslide. The results indicate that the stacking model has better robustness and generalization performance. Besides, the feature relative importance of four ensemble learning models was analysed, for enhancing the interpretability of ML models and pointing out the research direction of feature engineering in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12345完成签到,获得积分10
刚刚
2秒前
zzbyxh发布了新的文献求助10
2秒前
2秒前
精明的沅发布了新的文献求助10
2秒前
3秒前
Max哈哈哈发布了新的文献求助10
3秒前
没有昵称关注了科研通微信公众号
3秒前
4秒前
SUN完成签到,获得积分10
5秒前
今后应助Emma采纳,获得10
6秒前
baobao完成签到,获得积分10
7秒前
Sky发布了新的文献求助10
8秒前
8秒前
8秒前
MrDI发布了新的文献求助10
9秒前
10秒前
查理fofo发布了新的文献求助10
10秒前
活力青筠发布了新的文献求助10
11秒前
111发布了新的文献求助10
13秒前
墨客发布了新的文献求助10
13秒前
泡泡糖发布了新的文献求助10
16秒前
韩凡发布了新的文献求助10
18秒前
李奥发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
三物完成签到 ,获得积分10
18秒前
Seven发布了新的文献求助10
18秒前
18秒前
MrDI完成签到,获得积分10
19秒前
小魏不学无术完成签到,获得积分10
19秒前
Lucas应助冷酷的格尔曼采纳,获得10
21秒前
neWA完成签到,获得积分10
22秒前
Emma发布了新的文献求助10
22秒前
23秒前
科目三应助111采纳,获得10
24秒前
熙欢发布了新的文献求助20
25秒前
LJF发布了新的文献求助10
25秒前
26秒前
李爱国应助Tsui采纳,获得10
27秒前
所所应助chao采纳,获得10
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975375
求助须知:如何正确求助?哪些是违规求助? 3519700
关于积分的说明 11199305
捐赠科研通 3256034
什么是DOI,文献DOI怎么找? 1798049
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305