DetFusion: A Detection-driven Infrared and Visible Image Fusion Network

像素 目标检测 图像融合 计算机科学 对象(语法) 融合 人工智能 图像纹理 计算机视觉 保险丝(电气) 图像(数学) 模式识别(心理学) 图像处理 工程类 哲学 电气工程 语言学
作者
Yiming Sun,Bing Cao,Pengfei Zhu,Qinghua Hu
标识
DOI:10.1145/3503161.3547902
摘要

Infrared and visible image fusion aims to utilize the complementary information between the two modalities to synthesize a new image containing richer information. Most existing works have focused on how to better fuse the pixel-level details from both modalities in terms of contrast and texture, yet ignoring the fact that the significance of image fusion is to better serve downstream tasks. For object detection tasks, object-related information in images is often more valuable than focusing on the pixel-level details of images alone. To fill this gap, we propose a detection-driven infrared and visible image fusion network, termed DetFusion, which utilizes object-related information learned in the object detection networks to guide multimodal image fusion. We cascade the image fusion network with the detection networks of both modalities and use the detection loss of the fused images to provide guidance on task-related information for the optimization of the image fusion network. Considering that the object locations provide a priori information for image fusion, we propose an object-aware content loss that motivates the fusion model to better learn the pixel-level information in infrared and visible images. Moreover, we design a shared attention module to motivate the fusion network to learn object-specific information from the object detection networks. Extensive experiments show that our DetFusion outperforms state-of-the-art methods in maintaining pixel intensity distribution and preserving texture details. More notably, the performance comparison with state-of-the-art image fusion methods in task-driven evaluation also demonstrates the superiority of the proposed method. Our code will be available: https://github.com/SunYM2020/DetFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助羊玉林采纳,获得10
刚刚
123发布了新的文献求助10
1秒前
1秒前
海咲umi发布了新的文献求助10
2秒前
2秒前
hanshishengye完成签到 ,获得积分10
2秒前
王迪发布了新的文献求助10
2秒前
美好斓发布了新的文献求助10
3秒前
3秒前
Stella应助Clover04采纳,获得10
3秒前
3秒前
小葡萄完成签到 ,获得积分10
3秒前
充满希望完成签到,获得积分10
4秒前
乐乐应助falseme采纳,获得10
4秒前
4秒前
4秒前
5秒前
benj完成签到,获得积分10
5秒前
英俊的铭应助Laaaaaa采纳,获得10
6秒前
山山而川发布了新的文献求助10
6秒前
虚心焦发布了新的文献求助10
6秒前
笨笨百招应助动听的惋庭采纳,获得10
6秒前
蛋挞好好吃完成签到,获得积分10
6秒前
快乐寄风发布了新的文献求助10
6秒前
7秒前
pkaff完成签到,获得积分20
7秒前
111完成签到,获得积分10
7秒前
Stella应助CherylZhao采纳,获得30
7秒前
JamesPei应助Yuson_L采纳,获得10
7秒前
刘家成完成签到,获得积分10
8秒前
jinyu完成签到,获得积分10
8秒前
一只小小鸟完成签到,获得积分10
8秒前
8秒前
BJ_whc发布了新的文献求助10
8秒前
如意果汁发布了新的文献求助10
8秒前
8秒前
腼腆的忆安完成签到,获得积分10
9秒前
gaochanglu发布了新的文献求助10
9秒前
无奈的尔白完成签到,获得积分10
10秒前
脑洞疼应助eason采纳,获得10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587595
求助须知:如何正确求助?哪些是违规求助? 4670789
关于积分的说明 14784044
捐赠科研通 4623168
什么是DOI,文献DOI怎么找? 2531360
邀请新用户注册赠送积分活动 1500028
关于科研通互助平台的介绍 1468099