DetFusion: A Detection-driven Infrared and Visible Image Fusion Network

像素 目标检测 图像融合 计算机科学 对象(语法) 融合 人工智能 图像纹理 计算机视觉 保险丝(电气) 图像(数学) 模式识别(心理学) 图像处理 工程类 哲学 电气工程 语言学
作者
Yiming Sun,Bing Cao,Pengfei Zhu,Qinghua Hu
标识
DOI:10.1145/3503161.3547902
摘要

Infrared and visible image fusion aims to utilize the complementary information between the two modalities to synthesize a new image containing richer information. Most existing works have focused on how to better fuse the pixel-level details from both modalities in terms of contrast and texture, yet ignoring the fact that the significance of image fusion is to better serve downstream tasks. For object detection tasks, object-related information in images is often more valuable than focusing on the pixel-level details of images alone. To fill this gap, we propose a detection-driven infrared and visible image fusion network, termed DetFusion, which utilizes object-related information learned in the object detection networks to guide multimodal image fusion. We cascade the image fusion network with the detection networks of both modalities and use the detection loss of the fused images to provide guidance on task-related information for the optimization of the image fusion network. Considering that the object locations provide a priori information for image fusion, we propose an object-aware content loss that motivates the fusion model to better learn the pixel-level information in infrared and visible images. Moreover, we design a shared attention module to motivate the fusion network to learn object-specific information from the object detection networks. Extensive experiments show that our DetFusion outperforms state-of-the-art methods in maintaining pixel intensity distribution and preserving texture details. More notably, the performance comparison with state-of-the-art image fusion methods in task-driven evaluation also demonstrates the superiority of the proposed method. Our code will be available: https://github.com/SunYM2020/DetFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
徐志豪发布了新的文献求助10
刚刚
刚刚
2秒前
linmo发布了新的文献求助10
5秒前
高铭泽发布了新的文献求助10
5秒前
gyl发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
情怀应助zzz_yue采纳,获得10
9秒前
9秒前
冷傲菠萝发布了新的文献求助10
9秒前
xiachengcs发布了新的文献求助30
10秒前
10秒前
徐志豪完成签到,获得积分10
11秒前
12秒前
世界需要我完成签到,获得积分10
13秒前
swat发布了新的文献求助10
14秒前
14秒前
15秒前
星辰大海应助xiachengcs采纳,获得30
15秒前
cx发布了新的文献求助10
16秒前
SiO2发布了新的文献求助10
17秒前
鸣笛应助Messi采纳,获得10
17秒前
xing完成签到,获得积分10
17秒前
blacksmith0发布了新的文献求助10
17秒前
timo发布了新的文献求助10
17秒前
战斗暴龙兽完成签到,获得积分10
17秒前
18秒前
18秒前
池不胖完成签到 ,获得积分20
18秒前
19秒前
劳永杰发布了新的文献求助10
19秒前
酷波er应助苹果板凳采纳,获得10
21秒前
heren完成签到,获得积分10
22秒前
心灵美的笑卉完成签到,获得积分10
23秒前
沈惠映完成签到 ,获得积分10
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578