Optimal bidding strategy and profit allocation method for shared energy storage-assisted VPP in joint energy and regulation markets

投标 虚拟发电厂 利润(经济学) 储能 可再生能源 电力市场 计算机科学 夏普里值 业务 环境经济学 分布式发电 微观经济学 经济 工程类 功率(物理) 博弈论 电气工程 物理 量子力学
作者
Tianhan Zhang,Weiqiang Qiu,Zhi Zhang,Zhenzhi Lin,Yi Ding,Yi‐Ting Wang,Lianfang Wang,Li Yang
出处
期刊:Applied Energy [Elsevier]
卷期号:329: 120158-120158 被引量:58
标识
DOI:10.1016/j.apenergy.2022.120158
摘要

Renewable energy sources (RES) generating units such as wind power and photovoltaic (PV) units can be aggregated with controllable loads as virtual power plants (VPPs) to jointly participate in energy and regulation markets for extra market revenue. However, the uncertainty of RES limits the market performance of the VPP, which can be solved by energy storage. Due to the flexibility of the energy storage sharing mode, a two-part price-based leasing mechanism of shared energy storage (SES) considering market prices and battery degradation is proposed to provide the short-term use rights of energy storage for the VPP in a new pattern. Then, an SES-assisted real-time output cooperation scheme for the VPP in joint energy and regulation markets is designed to improve the VPP market performance and a joint optimal market bidding model of the VPP with the assistance of the SES is developed to maximize the expected daily profit. Moreover, a profit allocation approach for the SES-assisted VPP based on the improved Shapley value method and the minimizing deviation algorithm (ISV-MDA) is proposed to reflect the real contributions and balance the interests of its participants. Simulations based on data from PJM and NREL Dataset illustrate that RES can significantly improve their profits by participating in the VPP to jointly lease the use rights of SES and participate in joint energy and regulation markets through the cooperation and bidding strategies. In addition, the proposed profit allocation method is more reasonable and more targeted for allocating the cooperation profit than the cooperative game-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Kelly1426完成签到,获得积分10
2秒前
小鱼儿发布了新的文献求助10
2秒前
Wang完成签到 ,获得积分10
3秒前
WangZD发布了新的文献求助30
3秒前
wwww发布了新的文献求助10
3秒前
iufan发布了新的文献求助10
3秒前
min完成签到,获得积分10
4秒前
在水一方应助LepR采纳,获得30
4秒前
4秒前
紫易发布了新的文献求助10
4秒前
4秒前
乐乐应助虚心的幻翠采纳,获得10
5秒前
在水一方应助skyinner采纳,获得10
5秒前
5秒前
可爱的完成签到,获得积分10
6秒前
我是老大应助王博洋采纳,获得10
6秒前
桐桐应助1112采纳,获得10
6秒前
18922406869完成签到,获得积分20
6秒前
7秒前
8秒前
Zzzhuan完成签到,获得积分20
8秒前
8秒前
JCX完成签到,获得积分20
8秒前
sky123发布了新的文献求助10
9秒前
LHD发布了新的文献求助10
9秒前
geogydeniel完成签到 ,获得积分10
9秒前
10秒前
10秒前
科研通AI2S应助俭朴的天薇采纳,获得10
10秒前
香蕉觅云应助一支蕉采纳,获得10
10秒前
xueerbx发布了新的文献求助10
10秒前
Zzzhuan发布了新的文献求助10
10秒前
10秒前
可爱的发布了新的文献求助10
11秒前
orixero应助海风采纳,获得10
11秒前
聪明蛋hhh完成签到,获得积分20
11秒前
ykiiii发布了新的文献求助30
11秒前
小白又鹏发布了新的文献求助10
12秒前
lzy完成签到 ,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134659
求助须知:如何正确求助?哪些是违规求助? 2785567
关于积分的说明 7773009
捐赠科研通 2441215
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825