炎症
内分泌学
糖尿病肾病
信号转导
愤怒(情绪)
生物
癌症研究
免疫学
糖尿病
化学
细胞生物学
医学
神经科学
作者
Jiajun Chen,Peng He,Chaojie Chen,Ying Wang,Tingting Sang,Zheqi Cai,Qian Zhao,Shengjia Chen,Xiaojian Lin,Thomas E. Eling,Xingya Wang
出处
期刊:Life Sciences
[Elsevier BV]
日期:2022-10-29
卷期号:311: 121142-121142
被引量:40
标识
DOI:10.1016/j.lfs.2022.121142
摘要
Our previous studies showed that the nonsteroidal anti-inflammatory drug-activated gene-1, or growth differentiation factor-15 (NAG-1/GDF15) inhibits obesity and diabetes in mice. The current study aimed to examine the role and molecular mechanisms of NAG-1/GDF15 in diabetic nephropathy (DN), which is largely unknown. Both male and female wild-type (Wt) C57BL/6 mice and mice overexpressing human NAG-1/GDF15 (transgenic, Tg) were used, which were induced by high-fat diet (HFD)/streptozotocin (STZ) to establish the mouse model of DN. Transcriptome study was performed to identify the underlying molecular mechanisms of NAG-1/GDF15 against DN. In addition, human renal tubular epithelial cells (HK−2) were cultured with high glucose (HG) to establish a DN cellular model and were treated with NAG-1/GDF15 plasmid or the recombinant NAG-1/GDF15 protein for mechanism studies. Overexpression of NAG-1/GDF15 in Tg mice significantly alleviated HFD/STZ-induced typical symptoms of DN, improved lipid homeostasis, glucose intolerance, and insulin sensitivity. Histopathology of renal tissues revealed that NAG-1/GDF15 mice had significantly reduced renal injury, glycogen deposition, and renal fibrosis. Transcriptome study uncovered inflammation, cell adhesion, and the inflammation-related signaling pathways as major pathways suppressed in the NAG-1/GDF15 mice. Further studies demonstrated that NAG-1/GDF15 overexpression inhibited renal and systematic inflammation, inhibited the AGE/RAGE axis and its associated downstream inflammatory molecules and adhesion molecules, and inhibited the upregulation of TLR4/MyD88/NF-κB signaling pathway in mice. These results were further confirmed in HG-induced HK-2 cells. NAG-1/GDF15 plays an important role in the inhibition of the development and progression of DN via targeting AGE/RAGE-mediated inflammation pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI