Quantitative Cystocele Assessment in Clinical Pelvic Floor Ultrasound Diagnosis

医学 尿道 盆底 超声波 放射科 外科
作者
Nan Bao,S Chen,Meng‐Qiu Dong,Zhu Guangyu,Hong Li,Xinlu Wang
出处
期刊:Ultraschall in Der Medizin [Georg Thieme Verlag]
标识
DOI:10.1055/a-2589-7938
摘要

Purpose: Cystocele is a pelvic floor dysfunction disease prone to occur in women after childbirth. As the most commonly used examination method, the accuracy of pelvic floor ultrasound diagnosis is influenced by subjective factors such as doctor experience and fatigue level, making it challenging to achieve high accuracy, consistency, and repeatability of diagnosis. This study aims to propose a high-precision and fully automatic cystocele evaluation method based on pelvic floor ultrasound video images. Materials and Methods: This study retrospectively collected pelvic floor ultrasound images of 158 female G1P1 (first gestation and first parturition) patients from 2020 to 2024. According to the the ultrasound diagnosis of two senior doctors as the standard, 81 cystoceles and 66 non-cystocele patients were enrolled. Firstly, the ResNet34-UNet was used for automatic urethra segmentation. Then, key points were generated based on the automatically extracted urethra centerline. Features such as urethral key point displacement, urethral curvature change, and urethral inclination angles and their change were extracted for patients between rest and maximum Valsalva states. The support vector machine (SVM) classification model was used for cystocele prediction. Results: This study constructed two classification models to predict cystocele. One extracted the above features based on the automatic urethra segmention, while the other extracted them based on the doctor-annotated urethra. The experimental results show that both models have achieved good prediction results, with AUCs of 91.37% and 98.58%, respectively. Model performance based on the urethral image delineated by the doctor is better, with an AUC improvement of 7.21% on the independent test set. Conclusion: The proposed method can achieve high-precision, repeatable, fully automatic quantitative cystocele evaluation in pelvic floor ultrasound examinations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助柒_l采纳,获得10
1秒前
YYY应助站我采纳,获得10
2秒前
Ava应助站我采纳,获得10
2秒前
楚楚爸发布了新的文献求助20
3秒前
麦海星完成签到 ,获得积分10
4秒前
Ava应助正直的魔镜采纳,获得10
4秒前
但大图完成签到 ,获得积分10
5秒前
fanfan发布了新的文献求助10
5秒前
ebby发布了新的文献求助10
5秒前
6秒前
6秒前
小可爱发布了新的文献求助10
6秒前
蜜呐完成签到,获得积分10
7秒前
CometF完成签到 ,获得积分10
9秒前
lizzy发布了新的文献求助10
10秒前
feike完成签到,获得积分10
10秒前
绅度发布了新的文献求助10
10秒前
12秒前
13秒前
13秒前
XXDNC完成签到,获得积分10
13秒前
绅度完成签到,获得积分10
14秒前
王33完成签到,获得积分20
16秒前
迷途羔羊完成签到,获得积分10
17秒前
李爱国应助fanfan采纳,获得10
17秒前
柒_l发布了新的文献求助10
18秒前
18秒前
PROPELLER发布了新的文献求助10
18秒前
南瓜豆腐完成签到 ,获得积分10
19秒前
20秒前
21秒前
ytt完成签到,获得积分20
22秒前
隐形曼青应助lizzy采纳,获得10
22秒前
23秒前
23秒前
科研通AI5应助chengyulin采纳,获得10
23秒前
huangxiadie完成签到,获得积分10
23秒前
25秒前
26秒前
乐乐应助shushuai采纳,获得10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769978
求助须知:如何正确求助?哪些是违规求助? 3315078
关于积分的说明 10174548
捐赠科研通 3030246
什么是DOI,文献DOI怎么找? 1662752
邀请新用户注册赠送积分活动 795095
科研通“疑难数据库(出版商)”最低求助积分说明 756560