Explicitly unbiased large language models still form biased associations

计算机科学 计量经济学 数学 语言学 统计物理学 哲学 物理
作者
Xuechunzi Bai,Angelina Wang,Ilia Sucholutsky,Thomas L. Griffiths
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (8): e2416228122-e2416228122 被引量:25
标识
DOI:10.1073/pnas.2416228122
摘要

Large language models (LLMs) can pass explicit social bias tests but still harbor implicit biases, similar to humans who endorse egalitarian beliefs yet exhibit subtle biases. Measuring such implicit biases can be a challenge: As LLMs become increasingly proprietary, it may not be possible to access their embeddings and apply existing bias measures; furthermore, implicit biases are primarily a concern if they affect the actual decisions that these systems make. We address both challenges by introducing two measures: LLM Word Association Test, a prompt-based method for revealing implicit bias; and LLM Relative Decision Test, a strategy to detect subtle discrimination in contextual decisions. Both measures are based on psychological research: LLM Word Association Test adapts the Implicit Association Test, widely used to study the automatic associations between concepts held in human minds; and LLM Relative Decision Test operationalizes psychological results indicating that relative evaluations between two candidates, not absolute evaluations assessing each independently, are more diagnostic of implicit biases. Using these measures, we found pervasive stereotype biases mirroring those in society in 8 value-aligned models across 4 social categories (race, gender, religion, health) in 21 stereotypes (such as race and criminality, race and weapons, gender and science, age and negativity). These prompt-based measures draw from psychology’s long history of research into measuring stereotypes based on purely observable behavior; they expose nuanced biases in proprietary value-aligned LLMs that appear unbiased according to standard benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杭紫雪完成签到,获得积分10
刚刚
1秒前
酷波er应助大胆的铅笔采纳,获得10
1秒前
NJD应助www采纳,获得10
2秒前
霜烬染发布了新的文献求助10
3秒前
彭于晏应助儒雅从露采纳,获得10
3秒前
义气玫瑰完成签到,获得积分10
4秒前
5秒前
雷子完成签到,获得积分10
5秒前
Jane完成签到 ,获得积分10
5秒前
慕青应助dawn采纳,获得10
5秒前
yun发布了新的文献求助10
6秒前
执执发布了新的文献求助10
6秒前
7秒前
see完成签到,获得积分10
7秒前
8秒前
小蘑菇应助stepha采纳,获得10
9秒前
10秒前
10秒前
10秒前
qiuxu完成签到,获得积分10
10秒前
YJYLU留下了新的社区评论
12秒前
12秒前
大胆的铅笔完成签到,获得积分20
12秒前
13秒前
huajinoob完成签到,获得积分10
13秒前
王懒懒发布了新的文献求助10
14秒前
14秒前
JamesPei应助冷傲之玉采纳,获得10
15秒前
浮游应助冷艳的火龙果采纳,获得10
15秒前
16秒前
16秒前
一直发布了新的文献求助10
17秒前
yun完成签到,获得积分10
17秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
彭于彦祖应助科研通管家采纳,获得150
18秒前
18秒前
科目三应助科研通管家采纳,获得10
18秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350516
求助须知:如何正确求助?哪些是违规求助? 4483909
关于积分的说明 13957430
捐赠科研通 4383275
什么是DOI,文献DOI怎么找? 2408204
邀请新用户注册赠送积分活动 1400860
关于科研通互助平台的介绍 1374312