亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explicitly unbiased large language models still form biased associations

计算机科学 计量经济学 数学 语言学 统计物理学 哲学 物理
作者
Xuechunzi Bai,Angelina Wang,Ilia Sucholutsky,Thomas L. Griffiths
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (8)
标识
DOI:10.1073/pnas.2416228122
摘要

Large language models (LLMs) can pass explicit social bias tests but still harbor implicit biases, similar to humans who endorse egalitarian beliefs yet exhibit subtle biases. Measuring such implicit biases can be a challenge: As LLMs become increasingly proprietary, it may not be possible to access their embeddings and apply existing bias measures; furthermore, implicit biases are primarily a concern if they affect the actual decisions that these systems make. We address both challenges by introducing two measures: LLM Word Association Test, a prompt-based method for revealing implicit bias; and LLM Relative Decision Test, a strategy to detect subtle discrimination in contextual decisions. Both measures are based on psychological research: LLM Word Association Test adapts the Implicit Association Test, widely used to study the automatic associations between concepts held in human minds; and LLM Relative Decision Test operationalizes psychological results indicating that relative evaluations between two candidates, not absolute evaluations assessing each independently, are more diagnostic of implicit biases. Using these measures, we found pervasive stereotype biases mirroring those in society in 8 value-aligned models across 4 social categories (race, gender, religion, health) in 21 stereotypes (such as race and criminality, race and weapons, gender and science, age and negativity). These prompt-based measures draw from psychology's long history of research into measuring stereotypes based on purely observable behavior; they expose nuanced biases in proprietary value-aligned LLMs that appear unbiased according to standard benchmarks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三人行完成签到,获得积分10
2秒前
852应助abcdefg采纳,获得10
16秒前
科目三应助神勇的蛋挞采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
墨小韵完成签到,获得积分10
3分钟前
aiyawy完成签到 ,获得积分10
3分钟前
fengfenghao完成签到,获得积分10
3分钟前
天天快乐应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
FashionBoy应助7NEF采纳,获得10
3分钟前
牛八先生完成签到,获得积分10
3分钟前
hongyi完成签到,获得积分10
4分钟前
gszy1975完成签到,获得积分10
4分钟前
xiongyh10完成签到,获得积分10
4分钟前
5分钟前
三尺缺口发布了新的文献求助10
5分钟前
归尘应助科研通管家采纳,获得10
5分钟前
归尘应助科研通管家采纳,获得10
5分钟前
归尘应助科研通管家采纳,获得20
5分钟前
归尘应助科研通管家采纳,获得10
5分钟前
sino-ft完成签到,获得积分10
5分钟前
ClarkClarkson完成签到,获得积分10
6分钟前
6分钟前
A_Brute发布了新的文献求助10
6分钟前
A_Brute完成签到,获得积分10
6分钟前
6分钟前
聪慧千亦发布了新的文献求助10
7分钟前
聪慧千亦完成签到,获得积分10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067260
捐赠科研通 2750124
什么是DOI,文献DOI怎么找? 1509045
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896