亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Co‐model for chemical toxicity prediction based on multi‐task deep learning

计算机科学 机器学习 稳健性(进化) 人工智能 水准点(测量) 预测能力 任务(项目管理) 适用范围 训练集 化学信息学 化学毒性 集合(抽象数据类型) 数量结构-活动关系 数据挖掘 毒性 生物信息学 化学 哲学 经济 认识论 基因 有机化学 生物 管理 程序设计语言 地理 生物化学 大地测量学
作者
Yuan Yuan Li,Lingfeng Chen,Chengtao Pu,Chengdong Zang,Yingchao Yan,Yadong Chen,Yanmin Zhang,Haichun Liu
出处
期刊:Molecular Informatics [Wiley]
卷期号:42 (5): e2200257-e2200257 被引量:9
标识
DOI:10.1002/minf.202200257
摘要

Abstract The toxicity of compounds is closely related to the effectiveness and safety of drug development, and accurately predicting the toxicity of compounds is one of the most challenging tasks in medicinal chemistry and pharmacology. In this paper, we construct three types of models for single and multi‐tasking based on 2D and 3D descriptors, fingerprints and molecular graphs, and then validate the models with benchmark tests on the Tox21 data challenge. We found that due to the information sharing mechanism of multi‐task learning, it could address the imbalance problem of the Tox21 data sets to some extent, and the prediction performance of the multi‐task was significantly improved compared with the single task in general. Given the complement of the different molecular representations and modeling algorithms, we attempted to integrate them into a robust Co‐Model. Our Co‐Model performs well in various evaluation metrics on the test set and also achieves significant performance improvement compared to other models in the literature, which clearly demonstrates its superior predictive power and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大医仁心完成签到 ,获得积分10
2秒前
CipherSage应助Penny采纳,获得10
4秒前
15秒前
Penny完成签到,获得积分10
15秒前
Penny发布了新的文献求助10
19秒前
盈盈发布了新的文献求助10
21秒前
woxinyouyou完成签到,获得积分0
28秒前
meeteryu完成签到,获得积分10
30秒前
SciGPT应助盈盈采纳,获得10
32秒前
持卿应助科研通管家采纳,获得10
52秒前
持卿应助科研通管家采纳,获得10
52秒前
持卿应助科研通管家采纳,获得10
52秒前
持卿应助科研通管家采纳,获得10
53秒前
狂野丹翠应助科研通管家采纳,获得10
53秒前
Wone3完成签到 ,获得积分10
54秒前
knight7m完成签到 ,获得积分10
57秒前
哈哈完成签到 ,获得积分10
1分钟前
Alisha完成签到,获得积分10
1分钟前
1分钟前
1分钟前
jjy发布了新的文献求助30
1分钟前
jjy完成签到,获得积分10
1分钟前
duoduo完成签到,获得积分10
2分钟前
2分钟前
wl发布了新的文献求助20
2分钟前
Kun应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得20
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
CC完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
程晓研完成签到 ,获得积分10
4分钟前
lovelife完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
烟花应助清秀翠风采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160