医学
内科学
内分泌学
心脏纤维化
纤维化
糖尿病
射血分数
2型糖尿病
P物质
心力衰竭
神经肽
受体
作者
Giselle C. Meléndez,Kylie Kavanagh,Nazli Gharraee,Jessica L. Lacy,Kevin Goslen,Masha Block,Jordyn Whitfield,Alexander Widiapradja,Scott P. Levick
标识
DOI:10.1016/j.biopha.2023.114365
摘要
Type 2 diabetes mellitus (T2DM)-associated cardiac fibrosis contributes to heart failure. We previously showed that diabetic mice with cardiomyopathy, including cardiac fibrosis, exhibit low levels of the neuropeptide substance P; exogenous replacement of substance P reversed cardiac fibrosis, independent of body weight, blood glucose and blood pressure. We sought to elucidate the effectiveness and safety of replacement substance P to ameliorate or reverse cardiac fibrosis in type 2 diabetic monkeys. Four female T2DM African Green monkeys receive substance P (0.5 mg/Kg/day S.Q. injection) for 8 weeks. We obtained cardiac magnetic resonance imaging and blood samples to assess left ventricular function and fibrosis by T1 map-derived extracellular volume as well as circulating procollagen type I C-terminal propeptide. Hematological parameters for toxicities were also assessed in these monkeys and compared with three female T2DM monkeys receiving saline S.Q. as a safety comparison group. Diabetic monkeys receiving replacement substance P exhibited a ∼20% decrease in extracellular volume (p = 0.01), concomitant with ∼25% decrease procollagen type I C-terminal propeptide levels (p = 0.008). Left ventricular ejection fraction was unchanged with substance P (p = 0.42); however, circumferential strain was improved (p < 0.01). Complete blood counts, glycosylated hemoglobin A1c, lipids, liver and pancreatic enzymes, and inflammation markers were unchanged (p > 0.05). Replacement substance P reversed cardiac fibrosis in a large preclinical model of type 2 diabetes, independent of glycemic control. No hematological or organ-related toxicity was associated with replacement substance P. These results strongly support a potential application for replacement substance P as safe therapy for diabetic cardiac fibrosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI