百里香酚
东莨菪碱
神经保护
传统医学
药理学
阿米
生物
医学
生物化学
精油
植物
基因
基因-环境相互作用
基因型
作者
Binod Timalsina,Md. Nazmul Haque,Hyung Jun Choi,Raju Dash,Il Soo Moon
摘要
Several reports have stated the neuroprotective and learning/memory effects of Tachyspermum ammi seed extract (TASE) and its principal component thymol; however, little is known about its underlying molecular mechanisms and neurogenesis potential. This study aimed to provide insights into TASE and a thymol-mediated multifactorial therapeutic approach in a scopolamine-induced Alzheimer's disease (AD) mouse model. TASE and thymol supplementation significantly reduced oxidative stress markers such as brain glutathione, hydrogen peroxide, and malondialdehyde in mouse whole brain homogenates. Tumor necrosis factor-alpha was significantly downregulated, whereas the elevation of brain-derived neurotrophic factor and phospho-glycogen synthase kinase-3 beta (serine 9) enhanced learning and memory in the TASE- and thymol-treated groups. A significant reduction in the accumulation of Aβ 1-42 peptides was observed in the brains of TASE- and thymol-treated mice. Furthermore, TASE and thymol significantly promoted adult neurogenesis, with increased doublecortin positive neurons in the subgranular and polymorphic zones of the dentate gyrus in treated-mice. Collectively, TASE and thymol could potentially act as natural therapeutic agents for the treatment of neurodegenerative disorders, such as AD.
科研通智能强力驱动
Strongly Powered by AbleSci AI