清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FedGR: Federated Graph Neural Network for Recommendation Systems

计算机科学 图形 人工神经网络 加密 社交网络(社会语言学) 密码学 推荐系统 数据挖掘 信息隐私 数据建模 机器学习 人工智能 数据科学 理论计算机科学 计算机安全 社会化媒体 数据库 万维网
作者
Chuang Ma,Xin Ren,Guangxia Xu,Bo He
出处
期刊:Axioms [Multidisciplinary Digital Publishing Institute]
卷期号:12 (2): 170-170 被引量:5
标识
DOI:10.3390/axioms12020170
摘要

Social recommendation systems based on the graph neural network (GNN) have received a lot of research-related attention recently because they can use social information to improve recommendation accuracy and because of the benefits derived from the excellent performance of the graph neural network in graphic data modeling. A large number of excellent studies in this area have been proposed one after another, but they all share a common requirement that the data should be centrally stored. In recent years, there have been growing concerns about data privacy. At the same time, the introduction of numerous stringent data protection regulations, represented by general data protection regulations (GDPR), has challenged the recommendation models with conventional centralized data storage. For the above reasons, we have designed a flexible model of recommendation algorithms for social scenarios based on federated learning. We call it the federated graph neural network for recommendation systems (FedGR). Previous related work in this area has only considered GNN, social networks, and federated learning separately. Our work is the first to consider all three together, and we have carried out a detailed design for each part. In FedGR, we used the graph attention network to assist in modeling the implicit vector representation learned by users from social relationship graphs and historical item graphs. In order to protect data privacy, we used FedGR flexible data privacy protection by incorporating traditional cryptography encryption techniques with the proposed “noise injection” strategy, which enables FedGR to ensure data privacy while minimizing the loss of recommended performance. We also demonstrate a different learning paradigm for the recommendation model under federation. Our proposed work has been validated on two publicly available popular datasets. According to the experimental results, FedGR has decreased MAE and RMSE compared with previous work, which proves its rationality and effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如泣草芥完成签到,获得积分0
12秒前
111完成签到 ,获得积分10
20秒前
桐桐应助科研通管家采纳,获得10
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
jlwang完成签到,获得积分10
1分钟前
孙老师完成签到 ,获得积分10
1分钟前
hyxu678完成签到,获得积分10
1分钟前
lily完成签到 ,获得积分10
2分钟前
PeterLin完成签到,获得积分10
2分钟前
科研通AI5应助PeterLin采纳,获得30
2分钟前
追风少年完成签到 ,获得积分10
2分钟前
2分钟前
百里幻竹发布了新的文献求助10
2分钟前
一自文又欠完成签到 ,获得积分10
2分钟前
X519664508完成签到,获得积分0
3分钟前
刘刘完成签到 ,获得积分10
3分钟前
3分钟前
廖梦琪完成签到 ,获得积分10
3分钟前
chcmy完成签到 ,获得积分0
4分钟前
4分钟前
lanxinge完成签到 ,获得积分10
4分钟前
淡淡醉波wuliao完成签到 ,获得积分10
5分钟前
攀攀完成签到 ,获得积分10
5分钟前
woxinyouyou完成签到,获得积分0
5分钟前
LeoBigman完成签到 ,获得积分10
5分钟前
感动清炎发布了新的文献求助10
5分钟前
Ava应助科研通管家采纳,获得10
7分钟前
卡卡罗特先森完成签到 ,获得积分10
7分钟前
波西米亚完成签到,获得积分10
7分钟前
wuhu完成签到 ,获得积分10
8分钟前
迅速的幻雪完成签到 ,获得积分10
8分钟前
huanghe完成签到,获得积分10
8分钟前
香蕉觅云应助百里幻竹采纳,获得10
9分钟前
勤劳的颤完成签到 ,获得积分10
9分钟前
9分钟前
百里幻竹发布了新的文献求助10
9分钟前
coolplex完成签到 ,获得积分10
9分钟前
薛家泰完成签到 ,获得积分10
10分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
11分钟前
123321完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582701
求助须知:如何正确求助?哪些是违规求助? 4000325
关于积分的说明 12382353
捐赠科研通 3675425
什么是DOI,文献DOI怎么找? 2025834
邀请新用户注册赠送积分活动 1059487
科研通“疑难数据库(出版商)”最低求助积分说明 946158