亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FedGR: Federated Graph Neural Network for Recommendation Systems

计算机科学 图形 人工神经网络 加密 社交网络(社会语言学) 密码学 推荐系统 数据挖掘 信息隐私 数据建模 机器学习 人工智能 数据科学 理论计算机科学 计算机安全 社会化媒体 数据库 万维网
作者
Chuang Ma,Xin Ren,Guangxia Xu,Bo He
出处
期刊:Axioms [Multidisciplinary Digital Publishing Institute]
卷期号:12 (2): 170-170 被引量:5
标识
DOI:10.3390/axioms12020170
摘要

Social recommendation systems based on the graph neural network (GNN) have received a lot of research-related attention recently because they can use social information to improve recommendation accuracy and because of the benefits derived from the excellent performance of the graph neural network in graphic data modeling. A large number of excellent studies in this area have been proposed one after another, but they all share a common requirement that the data should be centrally stored. In recent years, there have been growing concerns about data privacy. At the same time, the introduction of numerous stringent data protection regulations, represented by general data protection regulations (GDPR), has challenged the recommendation models with conventional centralized data storage. For the above reasons, we have designed a flexible model of recommendation algorithms for social scenarios based on federated learning. We call it the federated graph neural network for recommendation systems (FedGR). Previous related work in this area has only considered GNN, social networks, and federated learning separately. Our work is the first to consider all three together, and we have carried out a detailed design for each part. In FedGR, we used the graph attention network to assist in modeling the implicit vector representation learned by users from social relationship graphs and historical item graphs. In order to protect data privacy, we used FedGR flexible data privacy protection by incorporating traditional cryptography encryption techniques with the proposed “noise injection” strategy, which enables FedGR to ensure data privacy while minimizing the loss of recommended performance. We also demonstrate a different learning paradigm for the recommendation model under federation. Our proposed work has been validated on two publicly available popular datasets. According to the experimental results, FedGR has decreased MAE and RMSE compared with previous work, which proves its rationality and effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
ding应助nns采纳,获得10
18秒前
vbnn完成签到 ,获得积分10
20秒前
45秒前
li199624发布了新的文献求助80
50秒前
li199624完成签到,获得积分10
57秒前
馆长应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
石头完成签到,获得积分10
1分钟前
Jessica完成签到,获得积分10
1分钟前
卓天宇完成签到,获得积分10
2分钟前
馆长应助科研通管家采纳,获得10
3分钟前
GPTea应助科研通管家采纳,获得10
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
馆长应助科研通管家采纳,获得10
5分钟前
GPTea应助科研通管家采纳,获得10
5分钟前
GPTea应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得100
5分钟前
酷波er应助dao采纳,获得30
6分钟前
6分钟前
dao发布了新的文献求助30
6分钟前
科研通AI6应助dao采纳,获得10
6分钟前
大熊完成签到 ,获得积分10
6分钟前
GPTea应助科研通管家采纳,获得10
7分钟前
GPTea应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
QCB完成签到 ,获得积分10
7分钟前
哈哈发布了新的文献求助10
7分钟前
7分钟前
Tsuzuri发布了新的文献求助30
8分钟前
Tsuzuri完成签到,获得积分10
8分钟前
CipherSage应助易昭华采纳,获得10
8分钟前
HBin完成签到,获得积分10
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910277
求助须知:如何正确求助?哪些是违规求助? 4186189
关于积分的说明 12999199
捐赠科研通 3953568
什么是DOI,文献DOI怎么找? 2168003
邀请新用户注册赠送积分活动 1186432
关于科研通互助平台的介绍 1093558