亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FedGR: Federated Graph Neural Network for Recommendation Systems

计算机科学 图形 人工神经网络 加密 社交网络(社会语言学) 密码学 推荐系统 数据挖掘 信息隐私 数据建模 机器学习 人工智能 数据科学 理论计算机科学 计算机安全 社会化媒体 数据库 万维网
作者
Chuang Ma,Xin Ren,Guangxia Xu,Bo He
出处
期刊:Axioms [MDPI AG]
卷期号:12 (2): 170-170 被引量:5
标识
DOI:10.3390/axioms12020170
摘要

Social recommendation systems based on the graph neural network (GNN) have received a lot of research-related attention recently because they can use social information to improve recommendation accuracy and because of the benefits derived from the excellent performance of the graph neural network in graphic data modeling. A large number of excellent studies in this area have been proposed one after another, but they all share a common requirement that the data should be centrally stored. In recent years, there have been growing concerns about data privacy. At the same time, the introduction of numerous stringent data protection regulations, represented by general data protection regulations (GDPR), has challenged the recommendation models with conventional centralized data storage. For the above reasons, we have designed a flexible model of recommendation algorithms for social scenarios based on federated learning. We call it the federated graph neural network for recommendation systems (FedGR). Previous related work in this area has only considered GNN, social networks, and federated learning separately. Our work is the first to consider all three together, and we have carried out a detailed design for each part. In FedGR, we used the graph attention network to assist in modeling the implicit vector representation learned by users from social relationship graphs and historical item graphs. In order to protect data privacy, we used FedGR flexible data privacy protection by incorporating traditional cryptography encryption techniques with the proposed “noise injection” strategy, which enables FedGR to ensure data privacy while minimizing the loss of recommended performance. We also demonstrate a different learning paradigm for the recommendation model under federation. Our proposed work has been validated on two publicly available popular datasets. According to the experimental results, FedGR has decreased MAE and RMSE compared with previous work, which proves its rationality and effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可耐的芮完成签到 ,获得积分10
10秒前
冷静的寒荷完成签到 ,获得积分10
11秒前
79完成签到 ,获得积分10
12秒前
顾君如完成签到 ,获得积分10
14秒前
李健应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
合适如南完成签到,获得积分10
29秒前
原始动物研究者协会完成签到 ,获得积分10
54秒前
雯小瑾完成签到 ,获得积分10
1分钟前
大意的晓亦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
春秋完成签到,获得积分20
1分钟前
春秋发布了新的文献求助10
1分钟前
Raunio完成签到 ,获得积分10
1分钟前
MM11111完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
优雅的薯片完成签到,获得积分20
2分钟前
Woo_SH完成签到 ,获得积分10
2分钟前
freeaway完成签到,获得积分10
2分钟前
黄花菜完成签到 ,获得积分10
2分钟前
归海梦岚完成签到,获得积分0
2分钟前
潇洒绿蕊完成签到,获得积分10
2分钟前
勤恳的雅容完成签到,获得积分10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
专注半烟完成签到 ,获得积分10
2分钟前
zxq1996完成签到 ,获得积分10
2分钟前
深情安青应助优雅的薯片采纳,获得10
2分钟前
这个手刹不太灵完成签到 ,获得积分10
2分钟前
合适如南关注了科研通微信公众号
3分钟前
满座完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
水盒子发布了新的文献求助10
3分钟前
燕子完成签到 ,获得积分10
3分钟前
3分钟前
开放溪灵发布了新的文献求助50
3分钟前
合适如南发布了新的文献求助20
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294413
求助须知:如何正确求助?哪些是违规求助? 2930341
关于积分的说明 8445942
捐赠科研通 2602612
什么是DOI,文献DOI怎么找? 1420666
科研通“疑难数据库(出版商)”最低求助积分说明 660559
邀请新用户注册赠送积分活动 643433