FedGR: Federated Graph Neural Network for Recommendation Systems

计算机科学 图形 人工神经网络 加密 社交网络(社会语言学) 密码学 推荐系统 数据挖掘 信息隐私 数据建模 机器学习 人工智能 数据科学 理论计算机科学 计算机安全 社会化媒体 数据库 万维网
作者
Chuang Ma,Xin Ren,Guangxia Xu,Bo He
出处
期刊:Axioms [MDPI AG]
卷期号:12 (2): 170-170 被引量:5
标识
DOI:10.3390/axioms12020170
摘要

Social recommendation systems based on the graph neural network (GNN) have received a lot of research-related attention recently because they can use social information to improve recommendation accuracy and because of the benefits derived from the excellent performance of the graph neural network in graphic data modeling. A large number of excellent studies in this area have been proposed one after another, but they all share a common requirement that the data should be centrally stored. In recent years, there have been growing concerns about data privacy. At the same time, the introduction of numerous stringent data protection regulations, represented by general data protection regulations (GDPR), has challenged the recommendation models with conventional centralized data storage. For the above reasons, we have designed a flexible model of recommendation algorithms for social scenarios based on federated learning. We call it the federated graph neural network for recommendation systems (FedGR). Previous related work in this area has only considered GNN, social networks, and federated learning separately. Our work is the first to consider all three together, and we have carried out a detailed design for each part. In FedGR, we used the graph attention network to assist in modeling the implicit vector representation learned by users from social relationship graphs and historical item graphs. In order to protect data privacy, we used FedGR flexible data privacy protection by incorporating traditional cryptography encryption techniques with the proposed “noise injection” strategy, which enables FedGR to ensure data privacy while minimizing the loss of recommended performance. We also demonstrate a different learning paradigm for the recommendation model under federation. Our proposed work has been validated on two publicly available popular datasets. According to the experimental results, FedGR has decreased MAE and RMSE compared with previous work, which proves its rationality and effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yukali发布了新的文献求助10
刚刚
安秀丽完成签到,获得积分20
刚刚
所所应助张沐金采纳,获得10
刚刚
cx发布了新的文献求助10
刚刚
刚刚
shabalala发布了新的文献求助10
1秒前
Kizuna发布了新的文献求助10
1秒前
安详的谷波完成签到,获得积分10
1秒前
1秒前
Chem完成签到,获得积分10
2秒前
NXFJ完成签到,获得积分10
2秒前
2秒前
3秒前
Wu完成签到 ,获得积分10
3秒前
sunny发布了新的文献求助10
3秒前
刘婷发布了新的文献求助10
3秒前
美好斓发布了新的文献求助30
4秒前
4秒前
ciciyu完成签到,获得积分10
5秒前
Hello应助ZYSNNNN采纳,获得10
5秒前
小赵同学完成签到,获得积分10
5秒前
阳光火车完成签到 ,获得积分10
6秒前
7秒前
英俊的铭应助sunshine采纳,获得10
7秒前
ev-nano发布了新的文献求助10
7秒前
7秒前
7秒前
指哪打哪发布了新的文献求助10
8秒前
懒洋洋大王完成签到,获得积分20
8秒前
悠悠发布了新的文献求助10
9秒前
9秒前
9秒前
满家归寻完成签到 ,获得积分10
10秒前
10秒前
在水一方应助cx采纳,获得10
10秒前
车车车车车车完成签到,获得积分10
10秒前
Halsey完成签到,获得积分10
10秒前
10秒前
慕青应助star采纳,获得10
11秒前
单纯谷云发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547929
求助须知:如何正确求助?哪些是违规求助? 4633375
关于积分的说明 14630983
捐赠科研通 4574989
什么是DOI,文献DOI怎么找? 2508795
邀请新用户注册赠送积分活动 1485047
关于科研通互助平台的介绍 1456075