FedGR: Federated Graph Neural Network for Recommendation Systems

计算机科学 图形 人工神经网络 加密 社交网络(社会语言学) 密码学 推荐系统 数据挖掘 信息隐私 数据建模 机器学习 人工智能 数据科学 理论计算机科学 计算机安全 社会化媒体 数据库 万维网
作者
Chuang Ma,Xin Ren,Guangxia Xu,Bo He
出处
期刊:Axioms [Multidisciplinary Digital Publishing Institute]
卷期号:12 (2): 170-170 被引量:5
标识
DOI:10.3390/axioms12020170
摘要

Social recommendation systems based on the graph neural network (GNN) have received a lot of research-related attention recently because they can use social information to improve recommendation accuracy and because of the benefits derived from the excellent performance of the graph neural network in graphic data modeling. A large number of excellent studies in this area have been proposed one after another, but they all share a common requirement that the data should be centrally stored. In recent years, there have been growing concerns about data privacy. At the same time, the introduction of numerous stringent data protection regulations, represented by general data protection regulations (GDPR), has challenged the recommendation models with conventional centralized data storage. For the above reasons, we have designed a flexible model of recommendation algorithms for social scenarios based on federated learning. We call it the federated graph neural network for recommendation systems (FedGR). Previous related work in this area has only considered GNN, social networks, and federated learning separately. Our work is the first to consider all three together, and we have carried out a detailed design for each part. In FedGR, we used the graph attention network to assist in modeling the implicit vector representation learned by users from social relationship graphs and historical item graphs. In order to protect data privacy, we used FedGR flexible data privacy protection by incorporating traditional cryptography encryption techniques with the proposed “noise injection” strategy, which enables FedGR to ensure data privacy while minimizing the loss of recommended performance. We also demonstrate a different learning paradigm for the recommendation model under federation. Our proposed work has been validated on two publicly available popular datasets. According to the experimental results, FedGR has decreased MAE and RMSE compared with previous work, which proves its rationality and effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ltutui7完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
2秒前
魏一一完成签到,获得积分10
2秒前
chun完成签到 ,获得积分10
2秒前
大个应助chhzz采纳,获得10
3秒前
LaTeXer应助enen采纳,获得10
3秒前
所所应助enen采纳,获得10
3秒前
3秒前
易安给易安的求助进行了留言
3秒前
a1075完成签到,获得积分10
4秒前
lulu发布了新的文献求助10
4秒前
小刘完成签到,获得积分10
4秒前
何rj发布了新的文献求助10
5秒前
乐彼之园完成签到 ,获得积分10
5秒前
董泽云发布了新的文献求助10
5秒前
认真平文发布了新的文献求助10
5秒前
onecat发布了新的文献求助10
6秒前
在水一方应助明理可愁采纳,获得10
6秒前
111关注了科研通微信公众号
6秒前
PUTIDAXIAN发布了新的文献求助10
6秒前
花开半夏发布了新的文献求助10
7秒前
着急的语海完成签到,获得积分10
7秒前
七叶花开发布了新的文献求助10
7秒前
纳米酶催化完成签到,获得积分10
7秒前
墨墨发布了新的文献求助10
8秒前
8秒前
8秒前
开心友儿完成签到,获得积分10
8秒前
英俊的铭应助a1075采纳,获得10
9秒前
9秒前
怎么睡不醒完成签到 ,获得积分10
10秒前
李旭关注了科研通微信公众号
10秒前
10秒前
方仔发布了新的文献求助30
10秒前
大发特发完成签到 ,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950510
求助须知:如何正确求助?哪些是违规求助? 3495946
关于积分的说明 11079852
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783799
邀请新用户注册赠送积分活动 867892
科研通“疑难数据库(出版商)”最低求助积分说明 800942