重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

FedGR: Federated Graph Neural Network for Recommendation Systems

计算机科学 图形 人工神经网络 加密 社交网络(社会语言学) 密码学 推荐系统 数据挖掘 信息隐私 数据建模 机器学习 人工智能 数据科学 理论计算机科学 计算机安全 社会化媒体 数据库 万维网
作者
Chuang Ma,Xin Ren,Guangxia Xu,Bo He
出处
期刊:Axioms [MDPI AG]
卷期号:12 (2): 170-170 被引量:5
标识
DOI:10.3390/axioms12020170
摘要

Social recommendation systems based on the graph neural network (GNN) have received a lot of research-related attention recently because they can use social information to improve recommendation accuracy and because of the benefits derived from the excellent performance of the graph neural network in graphic data modeling. A large number of excellent studies in this area have been proposed one after another, but they all share a common requirement that the data should be centrally stored. In recent years, there have been growing concerns about data privacy. At the same time, the introduction of numerous stringent data protection regulations, represented by general data protection regulations (GDPR), has challenged the recommendation models with conventional centralized data storage. For the above reasons, we have designed a flexible model of recommendation algorithms for social scenarios based on federated learning. We call it the federated graph neural network for recommendation systems (FedGR). Previous related work in this area has only considered GNN, social networks, and federated learning separately. Our work is the first to consider all three together, and we have carried out a detailed design for each part. In FedGR, we used the graph attention network to assist in modeling the implicit vector representation learned by users from social relationship graphs and historical item graphs. In order to protect data privacy, we used FedGR flexible data privacy protection by incorporating traditional cryptography encryption techniques with the proposed “noise injection” strategy, which enables FedGR to ensure data privacy while minimizing the loss of recommended performance. We also demonstrate a different learning paradigm for the recommendation model under federation. Our proposed work has been validated on two publicly available popular datasets. According to the experimental results, FedGR has decreased MAE and RMSE compared with previous work, which proves its rationality and effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮蛋瘦肉粥完成签到,获得积分10
刚刚
不想干活完成签到,获得积分10
刚刚
ieZH完成签到 ,获得积分10
1秒前
所所应助gzy采纳,获得10
1秒前
2秒前
2秒前
3秒前
碧蓝贞发布了新的文献求助10
3秒前
lin发布了新的文献求助10
3秒前
写手一号发布了新的文献求助10
3秒前
大脸猫发布了新的文献求助10
3秒前
3秒前
5秒前
6秒前
香蕉觅云应助舒心飞珍采纳,获得10
6秒前
6秒前
7秒前
7秒前
Hello应助jingjing采纳,获得10
7秒前
滕滕完成签到,获得积分10
8秒前
蔡宇滔发布了新的文献求助10
8秒前
任性依玉发布了新的文献求助10
9秒前
淡然的萝应助柚溪采纳,获得10
9秒前
renjiancihua发布了新的文献求助10
10秒前
晓静完成签到 ,获得积分10
10秒前
于金正给于金正的求助进行了留言
11秒前
三跳发布了新的文献求助10
12秒前
万能图书馆应助芒果不忙采纳,获得10
12秒前
浮游应助小飞侠来咯采纳,获得10
12秒前
酷波er应助苏打采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
15秒前
无花果应助AYEFORBIDER采纳,获得10
15秒前
在水一方应助帅气如蓉采纳,获得10
15秒前
Demon应助甜甜安彤采纳,获得20
15秒前
16秒前
moxi摩西完成签到,获得积分10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467656
求助须知:如何正确求助?哪些是违规求助? 4571307
关于积分的说明 14329661
捐赠科研通 4497890
什么是DOI,文献DOI怎么找? 2464141
邀请新用户注册赠送积分活动 1452961
关于科研通互助平台的介绍 1427673