锂(药物)
电解质
分离器(采油)
阳极
阴极
材料科学
化学工程
石墨
化学
复合材料
电化学
电极
内分泌学
热力学
工程类
物理
物理化学
医学
作者
Zhaoxin Lu,Zhenlian Chen,Muqin Wang,Yi Wan,Jingkun Yan,Shuaishuai Chen,Yan Shen,Yan Zhao,Deyu Wang
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2023-02-03
卷期号:6 (4): 2541-2549
被引量:5
标识
DOI:10.1021/acsaem.2c04006
摘要
Lithium aluminum titanium phosphate, abbreviated as LATP, is an important Li+ solid-state electrolyte thanks to its high ionic conductivity and good stability in the ambient atmosphere. Extensive efforts have been devoted to understanding its advanced electrochemical properties. However, the strategy to use it in practical cell is rarely available. In this work, we demonstrate LATP's working behavior via LATP that is coated on a separator facing the cathode and anode, respectively, in both graphite|LiNi0.8Co0.1Mn0.1O2 and Li|LiNi0.8Co0.1Mn0.1O2 cells. With the LATP contact with LiNi0.8Co0.1Mn0.1O2, the cells deliver slightly lower reversible capacity owing to a large Li+ diffusion impedance originated from the space charge layer formed between LATP and cathode and show better durability due to the synergetic Li+ transportation via LATP and organic electrolyte. As for LATP facing graphite, the cells deliver a higher discharge capacity and better cyclic stability. It is ascribed to the buffering and protecting effect of the solid electrolyte interphase (SEI) that reduces the interfacial impedance and precludes the interfacial reaction between LATP and lithiated graphite. When directly in contact with lithium, LATP is decomposed quickly and the cells' performance varies with the recipe of organic electrolytes. This work clearly indicated that LATP could improve the cells' performance when appropriate technologies are utilized to address the associated challenges.
科研通智能强力驱动
Strongly Powered by AbleSci AI