Gated‐Attention Model with Reinforcement Learning for Solving Dynamic Job Shop Scheduling Problem

强化学习 计算机科学 作业车间调度 启发式 变压器 人工智能 调度(生产过程) 嵌入 数学优化 机器学习 地铁列车时刻表 工程类 数学 操作系统 电气工程 电压
作者
Goytom Gebreyesus,Getu Fellek,Ahmed Farid,Shigeru Fujimura,Osamu Yoshie
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
卷期号:18 (6): 932-944 被引量:5
标识
DOI:10.1002/tee.23788
摘要

Job shop scheduling problem (JSSP) is one of the well‐known NP‐hard combinatorial optimization problems (COPs) that aims to optimize the sequential assignment of finite machines to a set of jobs while adhering to specified problem constraints. Conventional solution approaches which include heuristic dispatching rules and evolutionary algorithms has been largely in use to solve JSSPs. Recently, the use of reinforcement learning (RL) has gained popularity for delivering better solution quality for JSSPs. In this research, we propose an end‐to‐end deep reinforcement learning (DRL) based scheduling model for solving the standard JSSP. Our DRL model uses attention‐based encoder of Transformer network to embed the JSSP environment represented as a disjunctive graph. We introduced Gate mechanism to modulate the flow of learnt features by preventing noise features from propagating across the network to enrich the representations of nodes of the disjunctive graph. In addition, we designed a novel Gate‐based graph pooling mechanism that preferentially constructs the graph embedding. A simple multi‐layer perceptron (MLP) based action selection network is used for sequentially generating optimal schedules. The model is trained using proximal policy optimization (PPO) algorithm which is built on actor critic (AC) framework. Experimental results show that our model outperforms existing heuristics and state of the art DRL based baselines on generated instances and well‐known public test benchmarks. © 2023 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈发布了新的文献求助10
1秒前
Akim应助高文琴采纳,获得10
1秒前
2秒前
标致小天鹅完成签到 ,获得积分10
3秒前
campus完成签到,获得积分10
3秒前
应应完成签到,获得积分10
3秒前
huangxiaoniu发布了新的文献求助10
3秒前
fcyyc发布了新的文献求助10
4秒前
5秒前
6秒前
张张完成签到,获得积分20
8秒前
漪涙发布了新的文献求助10
9秒前
罗小罗同学完成签到,获得积分10
9秒前
搞怪白秋完成签到 ,获得积分10
10秒前
yana完成签到,获得积分10
11秒前
HK完成签到,获得积分10
11秒前
谢光菲完成签到,获得积分10
12秒前
ice完成签到 ,获得积分10
12秒前
超级的金毛完成签到,获得积分10
12秒前
顾矜应助雪白巨人采纳,获得10
13秒前
白色蒲公英完成签到,获得积分10
13秒前
CodeCraft应助甜蜜屁池采纳,获得10
13秒前
cgl155410完成签到,获得积分10
14秒前
宇文宛菡完成签到 ,获得积分10
14秒前
14秒前
李爱国应助康康采纳,获得10
14秒前
14秒前
大个应助想好好搞事业采纳,获得10
18秒前
Echo完成签到,获得积分10
18秒前
19秒前
zyj发布了新的文献求助10
19秒前
超级的一斩完成签到 ,获得积分10
20秒前
lin发布了新的文献求助10
20秒前
还单身的香之完成签到,获得积分10
20秒前
852应助冰阔落采纳,获得10
21秒前
zink完成签到,获得积分10
21秒前
22秒前
mol完成签到 ,获得积分10
22秒前
大卫戴完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547