重新使用
桥接(联网)
塑料废料
软件部署
业务
废物管理
工程类
计算机科学
软件工程
计算机网络
作者
Jackie Zheng,Md Arifuzzaman,Xiaomin Tang,X. Chelsea Chen,Tomonori Saito
出处
期刊:Materials horizons
[The Royal Society of Chemistry]
日期:2023-01-01
卷期号:10 (5): 1608-1624
被引量:3
摘要
Plastics have advanced society as a lightweight, inexpensive material of choice, and consequently over 400 million metric tons of plastics are produced each year. The difficulty with their reuse, due to varying chemical structures and properties, is leading to one of the major global challenges of the 21st century-plastic waste management. While mechanical recycling has been proven successful for certain types of plastic waste, most of these technologies can only recycle single types of plastics at a time. Since most recycling collection streams today have a mixture of different plastic types, additional sorting is required before the plastic waste can be processed by recyclers. To combat this problem, academics have devoted their efforts to developing technologies such as selective deconstruction catalysts or compatibilizer for commodity plastics and new types of upcycled plastics. In this review, the strengths and challenges of current commercial recycling processes are discussed, followed by examples of the advancement in academic research. Bridging a gap to integrate new recycling materials and processes into current industrial practices will improve commercial recycling and plastic waste management, as well as create new economies. Furthermore, establishing closed-loop circularity of plastics by the combined efforts of academia and industry will contribute toward establishing a net zero carbon society by significant reduction of carbon and energy footprints. This review serves as a guide to understand the gap and help to create a path for new discovery in academic research to be integrated into industrial practices.
科研通智能强力驱动
Strongly Powered by AbleSci AI