多元微积分
控制理论(社会学)
线性化
非线性系统
弹道
控制器(灌溉)
偏最小二乘回归
计算机科学
反馈线性化
控制工程
自适应控制
工程类
人工智能
控制(管理)
机器学习
农学
物理
量子力学
天文
生物
作者
Mingming Lin,Ronghu Chi,Na Lin,Zhiqing Liu
标识
DOI:10.1109/ddcls58216.2023.10166082
摘要
In this paper, a new model free adaptive control (MFAC) strategy based on partial least squares (PLS) framework is proposed to achieve trajectory tracking for multivariable nonlinear processes. The nonlinear dynamic characteristics of the multivariable systems are addressed by a dynamic linearization method and a linear PLS inner data model is obtained conse-quently including an unknown pseudo-partial derivative (PPD) parameter. Under the PLS framework, the multivariable system can be decomposed into multiple single-loop systems to facilitate the controller design. The controller design only depends on the measured input and output data. Simulation results demonstrate the effectiveness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI