Triboelectric nanogenerators with ultrahigh current density enhanced by hydrogen bonding between nylon and graphene oxide

摩擦电效应 材料科学 石墨烯 氧化物 纳米发生器 纳米技术 电流密度 开尔文探针力显微镜 氢键 电流(流体) 光电子学 复合材料 原子力显微镜 压电 电气工程 分子 有机化学 化学 物理 工程类 量子力学 冶金
作者
Renyun Zhang,Magnus Hummelgård,Jonas Örtegren,Henrik Andersson,Martin Olsen,Dabo Chen,Jiayong Li,Alireza Eivazi,Christina Dahlström,Magnus Norgren,Zhong Lin Wang
出处
期刊:Nano Energy [Elsevier]
卷期号:115: 108737-108737 被引量:20
标识
DOI:10.1016/j.nanoen.2023.108737
摘要

The triboelectric properties of the tribolayers are essential factors affecting the current density of triboelectric nanogenerators (TENGs). To enhance the current density, composites have been developed to tune their triboelectric properties. Previous studies have reported enhanced TENG performance with composite materials, primarily based on their composition, while chemical interactions between the components have been less analyzed. In this study, we report a novel approach to improve the current density of a TENG by introducing dipole-dipole interactions between a nylon filter membrane and graphene oxide (GO) through hydrogen bonds. The Raman spectroscopy confirmed the occurrence of the interactions resulting from hydrogen bonding. The enhancing mechanisms of hydrogen bonds were further analyzed by Kelvin probe force microscope (KPFM) measurement, which demonstrated that hydrogen bonding could influence the surface potential of the coated GO, leading to increased output of the nylon/GO@NFM TENG (NGN-TENG). Our results show that an ultrahigh current density of 1757 mA·m−2 was obtained with a 2 × 2 cm2 NGN-TENG. Additionally, we demonstrated the feasibility of using the NGN-TENG as a motion sensor to sense finger motions. These findings suggest that the introduction of hydrogen bonds in TENG composites can provide a promising route for improving their performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助超级的幻珊采纳,获得10
1秒前
1秒前
1秒前
阔达碧菡发布了新的文献求助10
2秒前
ASDq发布了新的文献求助30
2秒前
2秒前
3秒前
小马甲应助山药汤采纳,获得30
4秒前
4秒前
lab完成签到 ,获得积分0
5秒前
5秒前
江鹿柒柒完成签到,获得积分10
5秒前
可爱的寄真完成签到,获得积分20
6秒前
7秒前
orixero应助Denmark采纳,获得10
8秒前
江鹿柒柒发布了新的文献求助10
8秒前
8秒前
追剧狂魔发布了新的文献求助10
9秒前
彭于晏应助冰阔罗采纳,获得10
9秒前
一投就中发布了新的文献求助10
10秒前
Laputa发布了新的文献求助10
10秒前
xyg发布了新的文献求助10
10秒前
小马甲应助阔达碧菡采纳,获得10
11秒前
12秒前
Lucas应助药化行者采纳,获得10
12秒前
香蕉觅云应助xyg采纳,获得10
13秒前
14秒前
忐忑的方盒完成签到 ,获得积分10
14秒前
PHW完成签到,获得积分10
15秒前
樊璐完成签到,获得积分10
15秒前
科研通AI2S应助轻松的书琴采纳,获得10
16秒前
16秒前
呐呐呐完成签到,获得积分10
16秒前
18秒前
豆豆突发布了新的文献求助10
19秒前
19秒前
20秒前
jiayi发布了新的文献求助10
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641853
求助须知:如何正确求助?哪些是违规求助? 4757522
关于积分的说明 15015246
捐赠科研通 4800349
什么是DOI,文献DOI怎么找? 2565983
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483788