A novel RBFNN-UKF-based SOC estimator for automatic underwater vehicles considering a temperature compensation strategy

估计员 计算机科学 补偿(心理学) 卡尔曼滤波器 控制理论(社会学) 荷电状态 扩展卡尔曼滤波器 一般化 算法 电池(电) 人工智能 数学 功率(物理) 数学分析 物理 统计 量子力学 控制(管理) 心理学 精神分析
作者
Peiyu Chen,Zhaoyong Mao,Chiyu Wang,Chengyi Lu,Junqiu Li
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:72: 108373-108373 被引量:13
标识
DOI:10.1016/j.est.2023.108373
摘要

Accurate state of charge (SOC) estimation of batteries is a prerequisite for the reliable operation of automatic underwater vehicles. Currently, the accuracy of traditional SOC evaluation algorithms deteriorates significantly at low temperatures and low SOCs. Hence, a novel SOC estimator is proposed in this study, consisting of three efforts. Firstly, a new radial basis function neural network (RBFNN) battery model is built to replace the equivalent circuit model (ECM) for SOC estimation. Then, based on the relation between SOC and terminal voltage at a different temperature, a temperature compensation strategy is developed, which is an effortless operation and does not increase the computational burden. Finally, incorporating the new battery model, the temperature compensation strategy, and the unscented Kalman filter (UKF), a novel SOC estimation frame expressed as RBFNN-UKF is designed. The performance of the proposed method, including accuracy, generalization ability, and low-temperature adaptation, is evaluated systematically based on a publicly available dataset, where the inaccurate initial value and the current errors are added in each case. The results show that: (1) The SOC estimation curve of RBFNN-UKF can converge quickly to the reference curve and maintain good consistency even at low SOCs; (2) The proposed method exhibits excellent generalization capability for different dynamic cycles; (3) At low temperatures, the SOC estimation error of the RBFNN-UKF is reduced to 17 % of traditional ECM-UKF algorithm with the recursive least squares parameter identification method. The above results indicate that the proposed RBFNN-UKF-based SOC estimator has a high application value for AUVs and other vehicles working in complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
1秒前
科研助手6应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得20
1秒前
iNk应助科研通管家采纳,获得20
1秒前
ED应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
积极幻桃应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
研友_nq2EjZ完成签到,获得积分10
2秒前
2秒前
han应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
赘婿应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
han应助科研通管家采纳,获得10
2秒前
pluto发布了新的文献求助10
3秒前
卡拉米完成签到,获得积分10
3秒前
4秒前
orixero应助守仁则阳明采纳,获得10
4秒前
哈哈哈发布了新的文献求助10
5秒前
6秒前
looocc发布了新的文献求助10
6秒前
所所应助干饭啦采纳,获得10
7秒前
7秒前
hao发布了新的文献求助10
8秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020