已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel RBFNN-UKF-based SOC estimator for automatic underwater vehicles considering a temperature compensation strategy

估计员 计算机科学 补偿(心理学) 卡尔曼滤波器 控制理论(社会学) 荷电状态 扩展卡尔曼滤波器 一般化 算法 电池(电) 人工智能 数学 功率(物理) 数学分析 物理 统计 量子力学 控制(管理) 心理学 精神分析
作者
Peiyu Chen,Zhaoyong Mao,Chiyu Wang,Chengyi Lu,Junqiu Li
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108373-108373 被引量:22
标识
DOI:10.1016/j.est.2023.108373
摘要

Accurate state of charge (SOC) estimation of batteries is a prerequisite for the reliable operation of automatic underwater vehicles. Currently, the accuracy of traditional SOC evaluation algorithms deteriorates significantly at low temperatures and low SOCs. Hence, a novel SOC estimator is proposed in this study, consisting of three efforts. Firstly, a new radial basis function neural network (RBFNN) battery model is built to replace the equivalent circuit model (ECM) for SOC estimation. Then, based on the relation between SOC and terminal voltage at a different temperature, a temperature compensation strategy is developed, which is an effortless operation and does not increase the computational burden. Finally, incorporating the new battery model, the temperature compensation strategy, and the unscented Kalman filter (UKF), a novel SOC estimation frame expressed as RBFNN-UKF is designed. The performance of the proposed method, including accuracy, generalization ability, and low-temperature adaptation, is evaluated systematically based on a publicly available dataset, where the inaccurate initial value and the current errors are added in each case. The results show that: (1) The SOC estimation curve of RBFNN-UKF can converge quickly to the reference curve and maintain good consistency even at low SOCs; (2) The proposed method exhibits excellent generalization capability for different dynamic cycles; (3) At low temperatures, the SOC estimation error of the RBFNN-UKF is reduced to 17 % of traditional ECM-UKF algorithm with the recursive least squares parameter identification method. The above results indicate that the proposed RBFNN-UKF-based SOC estimator has a high application value for AUVs and other vehicles working in complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郜不正完成签到,获得积分10
刚刚
舒心小海豚完成签到 ,获得积分10
1秒前
1秒前
1秒前
kenti2023完成签到 ,获得积分10
2秒前
Ni发布了新的文献求助10
5秒前
hh完成签到 ,获得积分10
6秒前
CR7发布了新的文献求助10
7秒前
9秒前
10秒前
陶醉的蜜蜂完成签到 ,获得积分10
11秒前
大树完成签到 ,获得积分10
12秒前
棠真完成签到 ,获得积分0
12秒前
Ni完成签到 ,获得积分20
13秒前
U87完成签到,获得积分10
14秒前
111完成签到 ,获得积分10
14秒前
CR7完成签到,获得积分10
14秒前
ROC发布了新的文献求助10
15秒前
郑zheng完成签到 ,获得积分10
17秒前
GingerF应助科研通管家采纳,获得50
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得20
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
Owen应助牛哥采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
shanmao完成签到,获得积分10
19秒前
FashionBoy应助wise111采纳,获得10
21秒前
Sharif318完成签到,获得积分10
23秒前
爆米花应助Dragonfln采纳,获得10
24秒前
24秒前
26秒前
Jenny712发布了新的文献求助10
26秒前
28秒前
3D完成签到 ,获得积分10
31秒前
oldblack发布了新的文献求助10
32秒前
调皮的灰狼完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356201
求助须知:如何正确求助?哪些是违规求助? 4488058
关于积分的说明 13971574
捐赠科研通 4388833
什么是DOI,文献DOI怎么找? 2411257
邀请新用户注册赠送积分活动 1403802
关于科研通互助平台的介绍 1377590