亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Robust Infrared Small Target Detection Method Jointing Multiple Information and Noise Prediction: Algorithm and Benchmark

计算机科学 水准点(测量) 噪音(视频) 分割 假警报 人工智能 模式识别(心理学) 目标检测 红外线的 数据挖掘 图像(数学) 物理 大地测量学 光学 地理
作者
Siqiang Meng,Congxuan Zhang,Qi Shi,Zhen Chen,Weiming Hu,Feng Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:46
标识
DOI:10.1109/tgrs.2023.3295932
摘要

Infrared small target detection plays an important role in many military and civilian applications. Despite the great advances made by infrared small target detection studies in recent years, most of the existing methods have difficulty in balancing detection probabilities and false alarms. Moreover, there are only a few public datasets for infrared small targets, which limits the development of infrared small target detection research. To address the abovementioned issues, in this paper, we propose a robust infrared small target detection method that joins multiple pieces of information and noise predictions, named MINP-Net. Specifically, we first design a gradient and contextual information extraction module to extract multiscale features from an input infrared image. Second, we construct a noise prediction network to model the background noise. Third, we plan a regional positioning branch to provide a coarse target location to decrease the false alarm ratio. In addition, we build a new infrared small target detection benchmark to advance the research in this field, named the NCHU-Seg dataset. To the best of our knowledge, the NCHU-Seg dataset is the largest real-world scene dataset for evaluating infrared small target segmentation methods. For a comprehensive evaluation, we compare our method with some of the state-of-the-art methods on both the well-known NUAA-SIRST dataset and our NCHU-Seg dataset. The experimental results demonstrate that the proposed MINP-Net method performs better in terms of detection effectiveness and segmentation accuracy and effectively balances the detection probabilities and false alarms with complex backgrounds. (The code and dataset are available at https://github.com/PCwenyue.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合一海盗完成签到,获得积分10
刚刚
Hello应助生动友容采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
VDC应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
322628发布了新的文献求助10
2秒前
幸福的靳完成签到,获得积分10
5秒前
赘婿应助zw采纳,获得10
6秒前
Liz完成签到,获得积分10
7秒前
CodeCraft应助pepper采纳,获得10
9秒前
CLZ完成签到 ,获得积分10
10秒前
甜蜜舞蹈完成签到 ,获得积分10
11秒前
11秒前
tejing1158完成签到,获得积分10
13秒前
15秒前
15秒前
小绵羊发布了新的文献求助10
16秒前
zyl完成签到,获得积分10
17秒前
臻酒发布了新的文献求助10
17秒前
18秒前
生动友容发布了新的文献求助10
19秒前
20秒前
20秒前
adsdas465发布了新的文献求助10
21秒前
任性的羽毛完成签到 ,获得积分10
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
11发布了新的文献求助10
25秒前
27秒前
debile完成签到,获得积分10
32秒前
carols发布了新的文献求助10
34秒前
领导范儿应助Fluoxetine采纳,获得10
35秒前
37秒前
电量过低完成签到 ,获得积分10
44秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763611
求助须知:如何正确求助?哪些是违规求助? 5543116
关于积分的说明 15405167
捐赠科研通 4899313
什么是DOI,文献DOI怎么找? 2635467
邀请新用户注册赠送积分活动 1583538
关于科研通互助平台的介绍 1538681