A Robust Infrared Small Target Detection Method Jointing Multiple Information and Noise Prediction: Algorithm and Benchmark

计算机科学 水准点(测量) 噪音(视频) 分割 假警报 人工智能 模式识别(心理学) 目标检测 红外线的 数据挖掘 图像(数学) 大地测量学 光学 物理 地理
作者
Siqiang Meng,Congxuan Zhang,Qi Shi,Zhen Chen,Weiming Hu,Feng Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:46
标识
DOI:10.1109/tgrs.2023.3295932
摘要

Infrared small target detection plays an important role in many military and civilian applications. Despite the great advances made by infrared small target detection studies in recent years, most of the existing methods have difficulty in balancing detection probabilities and false alarms. Moreover, there are only a few public datasets for infrared small targets, which limits the development of infrared small target detection research. To address the abovementioned issues, in this paper, we propose a robust infrared small target detection method that joins multiple pieces of information and noise predictions, named MINP-Net. Specifically, we first design a gradient and contextual information extraction module to extract multiscale features from an input infrared image. Second, we construct a noise prediction network to model the background noise. Third, we plan a regional positioning branch to provide a coarse target location to decrease the false alarm ratio. In addition, we build a new infrared small target detection benchmark to advance the research in this field, named the NCHU-Seg dataset. To the best of our knowledge, the NCHU-Seg dataset is the largest real-world scene dataset for evaluating infrared small target segmentation methods. For a comprehensive evaluation, we compare our method with some of the state-of-the-art methods on both the well-known NUAA-SIRST dataset and our NCHU-Seg dataset. The experimental results demonstrate that the proposed MINP-Net method performs better in terms of detection effectiveness and segmentation accuracy and effectively balances the detection probabilities and false alarms with complex backgrounds. (The code and dataset are available at https://github.com/PCwenyue.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zikc完成签到,获得积分10
刚刚
负责天问完成签到,获得积分10
1秒前
Bingo完成签到 ,获得积分10
1秒前
霸王龙完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
苗条馒头完成签到,获得积分10
3秒前
爱听歌盼海完成签到 ,获得积分10
3秒前
micaixing2006完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
文静鸡翅完成签到 ,获得积分10
5秒前
5秒前
jiangjiang完成签到,获得积分10
6秒前
keyanyan完成签到,获得积分10
7秒前
8秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
8秒前
lemon应助科研通管家采纳,获得10
8秒前
淡然的莫茗完成签到 ,获得积分10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
HDJ应助科研通管家采纳,获得10
8秒前
niNe3YUE应助科研通管家采纳,获得10
8秒前
南风喜欢完成签到,获得积分10
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
8秒前
BowieHuang应助zhang采纳,获得10
9秒前
9秒前
cui完成签到,获得积分10
10秒前
shallow完成签到,获得积分10
11秒前
骑着蚂蚁追大象完成签到,获得积分10
12秒前
归海一刀完成签到,获得积分20
13秒前
小杨完成签到,获得积分10
14秒前
karL完成签到,获得积分10
14秒前
Dryad完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
thinking完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773550
求助须知:如何正确求助?哪些是违规求助? 5612386
关于积分的说明 15431598
捐赠科研通 4906002
什么是DOI,文献DOI怎么找? 2640012
邀请新用户注册赠送积分活动 1587860
关于科研通互助平台的介绍 1542922