亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Robust Infrared Small Target Detection Method Jointing Multiple Information and Noise Prediction: Algorithm and Benchmark

计算机科学 水准点(测量) 噪音(视频) 分割 假警报 人工智能 模式识别(心理学) 目标检测 红外线的 数据挖掘 图像(数学) 物理 大地测量学 光学 地理
作者
Siqiang Meng,Congxuan Zhang,Qi Shi,Zhen Chen,Weiming Hu,Feng Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:46
标识
DOI:10.1109/tgrs.2023.3295932
摘要

Infrared small target detection plays an important role in many military and civilian applications. Despite the great advances made by infrared small target detection studies in recent years, most of the existing methods have difficulty in balancing detection probabilities and false alarms. Moreover, there are only a few public datasets for infrared small targets, which limits the development of infrared small target detection research. To address the abovementioned issues, in this paper, we propose a robust infrared small target detection method that joins multiple pieces of information and noise predictions, named MINP-Net. Specifically, we first design a gradient and contextual information extraction module to extract multiscale features from an input infrared image. Second, we construct a noise prediction network to model the background noise. Third, we plan a regional positioning branch to provide a coarse target location to decrease the false alarm ratio. In addition, we build a new infrared small target detection benchmark to advance the research in this field, named the NCHU-Seg dataset. To the best of our knowledge, the NCHU-Seg dataset is the largest real-world scene dataset for evaluating infrared small target segmentation methods. For a comprehensive evaluation, we compare our method with some of the state-of-the-art methods on both the well-known NUAA-SIRST dataset and our NCHU-Seg dataset. The experimental results demonstrate that the proposed MINP-Net method performs better in terms of detection effectiveness and segmentation accuracy and effectively balances the detection probabilities and false alarms with complex backgrounds. (The code and dataset are available at https://github.com/PCwenyue.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luis应助科研通管家采纳,获得30
47秒前
gszy1975完成签到,获得积分10
59秒前
互助举报Summer2022求助涉嫌违规
1分钟前
Rebeccaiscute完成签到 ,获得积分10
1分钟前
Iron_five完成签到 ,获得积分0
1分钟前
2分钟前
nikg发布了新的文献求助10
2分钟前
诗梦完成签到,获得积分10
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
青葱鱼块完成签到 ,获得积分10
3分钟前
3分钟前
以七完成签到 ,获得积分10
3分钟前
sdkabdrxt完成签到,获得积分10
3分钟前
3分钟前
krajicek发布了新的文献求助10
4分钟前
4分钟前
闪闪沂完成签到 ,获得积分10
4分钟前
科研通AI6.2应助刻苦不弱采纳,获得10
5分钟前
5分钟前
小神仙完成签到 ,获得积分10
5分钟前
5分钟前
Isaac完成签到 ,获得积分10
5分钟前
刻苦不弱发布了新的文献求助10
5分钟前
6分钟前
毛耳朵发布了新的文献求助10
6分钟前
yzy完成签到 ,获得积分10
6分钟前
互助应助毛耳朵采纳,获得10
6分钟前
乐乐应助毛耳朵采纳,获得10
6分钟前
NattyPoe发布了新的文献求助10
6分钟前
忧心的士萧完成签到,获得积分10
6分钟前
今后应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
夏天无完成签到 ,获得积分10
6分钟前
Cloud发布了新的文献求助10
7分钟前
7分钟前
gkhsdvkb发布了新的文献求助10
7分钟前
yin景景完成签到,获得积分10
7分钟前
科研通AI6.2应助开霁采纳,获得10
7分钟前
李健的小迷弟应助颖颖采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870851
求助须知:如何正确求助?哪些是违规求助? 6468547
关于积分的说明 15665078
捐赠科研通 4987083
什么是DOI,文献DOI怎么找? 2689159
邀请新用户注册赠送积分活动 1631508
关于科研通互助平台的介绍 1589536