已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Robust Infrared Small Target Detection Method Jointing Multiple Information and Noise Prediction: Algorithm and Benchmark

计算机科学 水准点(测量) 噪音(视频) 分割 假警报 人工智能 模式识别(心理学) 目标检测 红外线的 数据挖掘 图像(数学) 大地测量学 光学 物理 地理
作者
Siqiang Meng,Congxuan Zhang,Qi Shi,Zhen Chen,Weiming Hu,Feng Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:46
标识
DOI:10.1109/tgrs.2023.3295932
摘要

Infrared small target detection plays an important role in many military and civilian applications. Despite the great advances made by infrared small target detection studies in recent years, most of the existing methods have difficulty in balancing detection probabilities and false alarms. Moreover, there are only a few public datasets for infrared small targets, which limits the development of infrared small target detection research. To address the abovementioned issues, in this paper, we propose a robust infrared small target detection method that joins multiple pieces of information and noise predictions, named MINP-Net. Specifically, we first design a gradient and contextual information extraction module to extract multiscale features from an input infrared image. Second, we construct a noise prediction network to model the background noise. Third, we plan a regional positioning branch to provide a coarse target location to decrease the false alarm ratio. In addition, we build a new infrared small target detection benchmark to advance the research in this field, named the NCHU-Seg dataset. To the best of our knowledge, the NCHU-Seg dataset is the largest real-world scene dataset for evaluating infrared small target segmentation methods. For a comprehensive evaluation, we compare our method with some of the state-of-the-art methods on both the well-known NUAA-SIRST dataset and our NCHU-Seg dataset. The experimental results demonstrate that the proposed MINP-Net method performs better in terms of detection effectiveness and segmentation accuracy and effectively balances the detection probabilities and false alarms with complex backgrounds. (The code and dataset are available at https://github.com/PCwenyue.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术小白w完成签到,获得积分10
刚刚
tangtang关注了科研通微信公众号
刚刚
1秒前
科研通AI6应助凶狠的源智采纳,获得10
2秒前
4秒前
传奇3应助hygge采纳,获得10
6秒前
6秒前
7秒前
7秒前
caoyonggang发布了新的文献求助10
8秒前
馆长给开心的访卉的求助进行了留言
8秒前
puppy发布了新的文献求助10
10秒前
科研通AI6应助嘛吉采纳,获得10
12秒前
12秒前
科研通AI6应助优雅的帅哥采纳,获得10
12秒前
小小牛马完成签到 ,获得积分10
14秒前
14秒前
15秒前
陈小白完成签到,获得积分10
15秒前
16秒前
ltttaaaa发布了新的文献求助10
16秒前
陆旻发布了新的文献求助10
17秒前
小小鹅发布了新的文献求助10
17秒前
tangtang发布了新的文献求助10
17秒前
幸运的姜姜完成签到 ,获得积分10
17秒前
科研民工李完成签到,获得积分10
20秒前
22秒前
23秒前
小小牛马关注了科研通微信公众号
23秒前
25秒前
25秒前
执着无声完成签到 ,获得积分10
29秒前
29秒前
30秒前
隐形曼青应助ranj采纳,获得10
31秒前
科研通AI2S应助worrywar采纳,获得10
34秒前
明月清风发布了新的文献求助10
38秒前
幽默枫发布了新的文献求助10
38秒前
清爽的曼易完成签到,获得积分10
39秒前
40秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126032
求助须知:如何正确求助?哪些是违规求助? 4329689
关于积分的说明 13491683
捐赠科研通 4164660
什么是DOI,文献DOI怎么找? 2283026
邀请新用户注册赠送积分活动 1284135
关于科研通互助平台的介绍 1223522