A Robust Infrared Small Target Detection Method Jointing Multiple Information and Noise Prediction: Algorithm and Benchmark

计算机科学 水准点(测量) 噪音(视频) 分割 假警报 人工智能 模式识别(心理学) 目标检测 红外线的 数据挖掘 图像(数学) 大地测量学 光学 物理 地理
作者
Siqiang Meng,Congxuan Zhang,Qi Shi,Zhen Chen,Weiming Hu,Feng Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:41
标识
DOI:10.1109/tgrs.2023.3295932
摘要

Infrared small target detection plays an important role in many military and civilian applications. Despite the great advances made by infrared small target detection studies in recent years, most of the existing methods have difficulty in balancing detection probabilities and false alarms. Moreover, there are only a few public datasets for infrared small targets, which limits the development of infrared small target detection research. To address the abovementioned issues, in this paper, we propose a robust infrared small target detection method that joins multiple pieces of information and noise predictions, named MINP-Net. Specifically, we first design a gradient and contextual information extraction module to extract multiscale features from an input infrared image. Second, we construct a noise prediction network to model the background noise. Third, we plan a regional positioning branch to provide a coarse target location to decrease the false alarm ratio. In addition, we build a new infrared small target detection benchmark to advance the research in this field, named the NCHU-Seg dataset. To the best of our knowledge, the NCHU-Seg dataset is the largest real-world scene dataset for evaluating infrared small target segmentation methods. For a comprehensive evaluation, we compare our method with some of the state-of-the-art methods on both the well-known NUAA-SIRST dataset and our NCHU-Seg dataset. The experimental results demonstrate that the proposed MINP-Net method performs better in terms of detection effectiveness and segmentation accuracy and effectively balances the detection probabilities and false alarms with complex backgrounds. (The code and dataset are available at https://github.com/PCwenyue.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腾腾腾发布了新的文献求助10
刚刚
刚刚
科研通AI5应助哭泣笑柳采纳,获得10
1秒前
2秒前
immm发布了新的文献求助10
3秒前
腾腾腾完成签到,获得积分10
5秒前
9秒前
科研通AI5应助大橙子采纳,获得10
10秒前
Rubby应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
11秒前
俏皮火完成签到 ,获得积分10
11秒前
一一一应助Bin_Liu采纳,获得10
11秒前
12秒前
啾啾啾完成签到,获得积分20
13秒前
Wang完成签到,获得积分10
14秒前
16秒前
啾啾啾发布了新的文献求助10
16秒前
CHSLN完成签到 ,获得积分10
17秒前
biofresh发布了新的文献求助30
17秒前
17秒前
18秒前
超级无敌奥特大王完成签到,获得积分10
18秒前
NexusExplorer应助小包子采纳,获得10
18秒前
努力向前看完成签到,获得积分10
20秒前
20秒前
20秒前
agnes完成签到,获得积分10
21秒前
失眠的向日葵完成签到 ,获得积分10
21秒前
大橙子发布了新的文献求助10
22秒前
24秒前
25秒前
qq完成签到,获得积分10
26秒前
王二哈完成签到,获得积分10
27秒前
行者无疆发布了新的文献求助10
28秒前
令散内方完成签到,获得积分10
28秒前
外向的雁玉完成签到,获得积分10
28秒前
慧灰huihui发布了新的文献求助10
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022