A Robust Infrared Small Target Detection Method Jointing Multiple Information and Noise Prediction: Algorithm and Benchmark

计算机科学 水准点(测量) 噪音(视频) 分割 假警报 人工智能 模式识别(心理学) 目标检测 红外线的 数据挖掘 图像(数学) 物理 大地测量学 光学 地理
作者
Siqiang Meng,Congxuan Zhang,Qi Shi,Zhen Chen,Weiming Hu,Feng Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:7
标识
DOI:10.1109/tgrs.2023.3295932
摘要

Infrared small target detection plays an important role in many military and civilian applications. Despite the great advances made by infrared small target detection studies in recent years, most of the existing methods have difficulty in balancing detection probabilities and false alarms. Moreover, there are only a few public datasets for infrared small targets, which limits the development of infrared small target detection research. To address the abovementioned issues, in this paper, we propose a robust infrared small target detection method that joins multiple pieces of information and noise predictions, named MINP-Net. Specifically, we first design a gradient and contextual information extraction module to extract multiscale features from an input infrared image. Second, we construct a noise prediction network to model the background noise. Third, we plan a regional positioning branch to provide a coarse target location to decrease the false alarm ratio. In addition, we build a new infrared small target detection benchmark to advance the research in this field, named the NCHU-Seg dataset. To the best of our knowledge, the NCHU-Seg dataset is the largest real-world scene dataset for evaluating infrared small target segmentation methods. For a comprehensive evaluation, we compare our method with some of the state-of-the-art methods on both the well-known NUAA-SIRST dataset and our NCHU-Seg dataset. The experimental results demonstrate that the proposed MINP-Net method performs better in terms of detection effectiveness and segmentation accuracy and effectively balances the detection probabilities and false alarms with complex backgrounds. (The code and dataset are available at https://github.com/PCwenyue.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正经俠发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
学科共进完成签到,获得积分10
2秒前
百草27完成签到,获得积分10
2秒前
3秒前
4秒前
5秒前
绵马紫萁发布了新的文献求助10
5秒前
6秒前
fzhou完成签到 ,获得积分10
6秒前
尘雾发布了新的文献求助10
6秒前
7秒前
一一发布了新的文献求助20
7秒前
7秒前
Aixia完成签到 ,获得积分10
8秒前
葡萄糖完成签到,获得积分10
8秒前
哈哈完成签到,获得积分10
8秒前
在水一方应助CC采纳,获得10
8秒前
8秒前
余笙完成签到 ,获得积分10
9秒前
神勇的雅香应助科研混子采纳,获得10
9秒前
TT发布了新的文献求助10
10秒前
李顺完成签到,获得积分20
11秒前
ayin发布了新的文献求助10
11秒前
wait发布了新的文献求助10
11秒前
我是站长才怪应助xg采纳,获得10
12秒前
童话艺术佳完成签到,获得积分10
12秒前
稀罕你完成签到,获得积分10
12秒前
junzilan发布了新的文献求助10
12秒前
anny.white完成签到,获得积分10
13秒前
科研通AI5应助平常的毛豆采纳,获得10
15秒前
SciGPT应助paul采纳,获得10
18秒前
20秒前
英姑应助书生采纳,获得10
21秒前
科研钓鱼佬完成签到,获得积分10
22秒前
24秒前
petrichor应助C_Cppp采纳,获得10
24秒前
nan完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824