A Robust Infrared Small Target Detection Method Jointing Multiple Information and Noise Prediction: Algorithm and Benchmark

计算机科学 水准点(测量) 噪音(视频) 分割 假警报 人工智能 模式识别(心理学) 目标检测 红外线的 数据挖掘 图像(数学) 大地测量学 光学 物理 地理
作者
Siqiang Meng,Congxuan Zhang,Qi Shi,Zhen Chen,Weiming Hu,Feng Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:41
标识
DOI:10.1109/tgrs.2023.3295932
摘要

Infrared small target detection plays an important role in many military and civilian applications. Despite the great advances made by infrared small target detection studies in recent years, most of the existing methods have difficulty in balancing detection probabilities and false alarms. Moreover, there are only a few public datasets for infrared small targets, which limits the development of infrared small target detection research. To address the abovementioned issues, in this paper, we propose a robust infrared small target detection method that joins multiple pieces of information and noise predictions, named MINP-Net. Specifically, we first design a gradient and contextual information extraction module to extract multiscale features from an input infrared image. Second, we construct a noise prediction network to model the background noise. Third, we plan a regional positioning branch to provide a coarse target location to decrease the false alarm ratio. In addition, we build a new infrared small target detection benchmark to advance the research in this field, named the NCHU-Seg dataset. To the best of our knowledge, the NCHU-Seg dataset is the largest real-world scene dataset for evaluating infrared small target segmentation methods. For a comprehensive evaluation, we compare our method with some of the state-of-the-art methods on both the well-known NUAA-SIRST dataset and our NCHU-Seg dataset. The experimental results demonstrate that the proposed MINP-Net method performs better in terms of detection effectiveness and segmentation accuracy and effectively balances the detection probabilities and false alarms with complex backgrounds. (The code and dataset are available at https://github.com/PCwenyue.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助娟姐采纳,获得10
1秒前
完美芒果发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
3秒前
幸福大白发布了新的文献求助10
3秒前
无数次呐喊完成签到,获得积分10
4秒前
yizhiGao应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
cherlie应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
MEDwhy完成签到,获得积分10
6秒前
6秒前
雨声完成签到,获得积分10
7秒前
DueR发布了新的文献求助10
7秒前
Liufgui应助YJ888采纳,获得10
7秒前
8秒前
10秒前
11秒前
学术蝗虫发布了新的文献求助10
12秒前
好好好完成签到,获得积分10
12秒前
王某发布了新的文献求助30
12秒前
12秒前
张兔子关注了科研通微信公众号
17秒前
难过冷玉发布了新的文献求助10
17秒前
逸晨发布了新的文献求助10
17秒前
20秒前
20秒前
水蜜桃幽灵完成签到,获得积分20
22秒前
难过冷玉完成签到,获得积分10
23秒前
a雪橙发布了新的文献求助10
24秒前
24秒前
Hina发布了新的文献求助30
24秒前
eueurhj完成签到,获得积分10
26秒前
多情邑发布了新的文献求助10
27秒前
上官若男应助逸晨采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176