A Robust Infrared Small Target Detection Method Jointing Multiple Information and Noise Prediction: Algorithm and Benchmark

计算机科学 水准点(测量) 噪音(视频) 分割 假警报 人工智能 模式识别(心理学) 目标检测 红外线的 数据挖掘 图像(数学) 物理 大地测量学 光学 地理
作者
Siqiang Meng,Congxuan Zhang,Qi Shi,Zhen Chen,Weiming Hu,Feng Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:46
标识
DOI:10.1109/tgrs.2023.3295932
摘要

Infrared small target detection plays an important role in many military and civilian applications. Despite the great advances made by infrared small target detection studies in recent years, most of the existing methods have difficulty in balancing detection probabilities and false alarms. Moreover, there are only a few public datasets for infrared small targets, which limits the development of infrared small target detection research. To address the abovementioned issues, in this paper, we propose a robust infrared small target detection method that joins multiple pieces of information and noise predictions, named MINP-Net. Specifically, we first design a gradient and contextual information extraction module to extract multiscale features from an input infrared image. Second, we construct a noise prediction network to model the background noise. Third, we plan a regional positioning branch to provide a coarse target location to decrease the false alarm ratio. In addition, we build a new infrared small target detection benchmark to advance the research in this field, named the NCHU-Seg dataset. To the best of our knowledge, the NCHU-Seg dataset is the largest real-world scene dataset for evaluating infrared small target segmentation methods. For a comprehensive evaluation, we compare our method with some of the state-of-the-art methods on both the well-known NUAA-SIRST dataset and our NCHU-Seg dataset. The experimental results demonstrate that the proposed MINP-Net method performs better in terms of detection effectiveness and segmentation accuracy and effectively balances the detection probabilities and false alarms with complex backgrounds. (The code and dataset are available at https://github.com/PCwenyue.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助10
2秒前
yn发布了新的文献求助10
2秒前
rloooooooo发布了新的文献求助10
3秒前
优美紫槐发布了新的文献求助10
3秒前
wanci应助Leoon采纳,获得20
3秒前
3秒前
彭于晏应助ember采纳,获得80
4秒前
keyanlv发布了新的文献求助10
4秒前
5秒前
5秒前
阿海的发布了新的文献求助10
5秒前
5秒前
在水一方应助科研大捞采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
Youlu发布了新的文献求助10
7秒前
高兴海燕发布了新的文献求助10
8秒前
大个应助yn采纳,获得10
9秒前
搜集达人应助drama_queen采纳,获得10
10秒前
10秒前
星星发布了新的文献求助30
10秒前
李爱国应助周小鱼采纳,获得10
11秒前
11秒前
阿海的完成签到,获得积分10
11秒前
炙热果汁发布了新的文献求助10
12秒前
Akim应助失眠的契采纳,获得10
12秒前
13秒前
LaTeXer应助Jackhai采纳,获得30
13秒前
啊啊啊啊完成签到,获得积分10
13秒前
13秒前
毛毛616完成签到,获得积分10
13秒前
小汤完成签到 ,获得积分10
13秒前
明明明明明明明明z完成签到,获得积分10
14秒前
pigff发布了新的文献求助10
14秒前
从容的水风完成签到,获得积分20
14秒前
ShengQ发布了新的文献求助30
15秒前
自由妙竹发布了新的文献求助10
16秒前
rrrrrrry发布了新的文献求助10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720613
求助须知:如何正确求助?哪些是违规求助? 5261184
关于积分的说明 15291693
捐赠科研通 4869973
什么是DOI,文献DOI怎么找? 2615162
邀请新用户注册赠送积分活动 1565108
关于科研通互助平台的介绍 1522214