A Robust Infrared Small Target Detection Method Jointing Multiple Information and Noise Prediction: Algorithm and Benchmark

计算机科学 水准点(测量) 噪音(视频) 分割 假警报 人工智能 模式识别(心理学) 目标检测 红外线的 数据挖掘 图像(数学) 物理 大地测量学 光学 地理
作者
Siqiang Meng,Congxuan Zhang,Qi Shi,Zhen Chen,Weiming Hu,Feng Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:46
标识
DOI:10.1109/tgrs.2023.3295932
摘要

Infrared small target detection plays an important role in many military and civilian applications. Despite the great advances made by infrared small target detection studies in recent years, most of the existing methods have difficulty in balancing detection probabilities and false alarms. Moreover, there are only a few public datasets for infrared small targets, which limits the development of infrared small target detection research. To address the abovementioned issues, in this paper, we propose a robust infrared small target detection method that joins multiple pieces of information and noise predictions, named MINP-Net. Specifically, we first design a gradient and contextual information extraction module to extract multiscale features from an input infrared image. Second, we construct a noise prediction network to model the background noise. Third, we plan a regional positioning branch to provide a coarse target location to decrease the false alarm ratio. In addition, we build a new infrared small target detection benchmark to advance the research in this field, named the NCHU-Seg dataset. To the best of our knowledge, the NCHU-Seg dataset is the largest real-world scene dataset for evaluating infrared small target segmentation methods. For a comprehensive evaluation, we compare our method with some of the state-of-the-art methods on both the well-known NUAA-SIRST dataset and our NCHU-Seg dataset. The experimental results demonstrate that the proposed MINP-Net method performs better in terms of detection effectiveness and segmentation accuracy and effectively balances the detection probabilities and false alarms with complex backgrounds. (The code and dataset are available at https://github.com/PCwenyue.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助负灵采纳,获得10
刚刚
一平发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
七七发布了新的文献求助10
2秒前
2秒前
脑洞疼应助幸福妙柏采纳,获得10
2秒前
财财发布了新的文献求助20
3秒前
3秒前
NexusExplorer应助轻松元柏采纳,获得10
4秒前
4秒前
晓静完成签到 ,获得积分10
4秒前
4秒前
黙宇循光完成签到 ,获得积分10
6秒前
Akim应助bjwh采纳,获得10
7秒前
淡淡的酸奶完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
21发布了新的文献求助10
9秒前
9秒前
12秒前
13秒前
李国明发布了新的文献求助10
14秒前
ding应助zhoujingya采纳,获得10
15秒前
16秒前
早点毕业完成签到,获得积分10
16秒前
18秒前
18秒前
不鞠一格发布了新的文献求助10
19秒前
今后应助沉小墨采纳,获得10
19秒前
在水一方应助怡然新之采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
寻道图强应助Takahara2000采纳,获得30
22秒前
清新的S发布了新的文献求助10
23秒前
大模型应助一平采纳,获得10
23秒前
24秒前
金博洋发布了新的文献求助10
25秒前
嘟噜嘟噜应助Tonson采纳,获得40
25秒前
轻松元柏完成签到,获得积分20
26秒前
yihong完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425091
求助须知:如何正确求助?哪些是违规求助? 4539235
关于积分的说明 14166259
捐赠科研通 4456389
什么是DOI,文献DOI怎么找? 2444167
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412539