Principal component analysis approach for detecting faults in rotary machines based on vibrational and electrical fused data

主成分分析 停工期 人工神经网络 振动 瓶颈 工程类 模式识别(心理学) 加权 断层(地质) 传感器融合 计算机科学 人工智能 数据挖掘 可靠性工程 物理 放射科 地质学 医学 嵌入式系统 地震学 量子力学
作者
Mahmoud Elsamanty,Abdelkader Ibrahim,Wael Saady Salman
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110559-110559 被引量:15
标识
DOI:10.1016/j.ymssp.2023.110559
摘要

Rotating machines are frequently used in industrial applications. However, due to their severity, mechanical failures such as rotor imbalance, shaft imbalance, pulley imbalance, structural breakage, and bearing imbalance can lead to unplanned shutdowns. While vibration analysis-based condition monitoring techniques can detect and diagnose many early errors, certain mechanical faults have associated vibration characteristics that make it difficult to identify and distinguish these faults. To address this issue, this paper proposes a method based on data fusion for vibrational and electrical signatures to achieve new fused signatures for healthy and different faulty cases. The weighted decision fusion method generates the fused decision by weighting and combining the output of multiple sensors. Conventional vibration evaluation parameters diagnose unbalance, pulley misalignment, belt damage, and combined faults. However, these parameters have more dimensions and correlated features for some faulty cases, such as unbalance and misalignment. Therefore, the Principal Component Analysis (PCA) was applied to reduce the dimensionality of evaluating parameters and preserve almost all data variation. The PCA produces uncorrelated Principal Components (PCs) for each case. A backpropagation neural network (BPNN) was constructed to construct an integrated fault diagnosis framework. The first and second PC was inserted as input parameters in the training set of BPNN. It was observed that BPNN achieves 2.1762×10-10 Mean Squared Error (MSE) demonstrates superior data fusion solutions and PCA in the condition monitoring of rotating machines. Overall, this study proposes an effective method for diagnosing mechanical faults in rotating machines, which can improve reliability and reduce downtime in industrial applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
li完成签到 ,获得积分10
1秒前
酷奔发布了新的文献求助10
1秒前
popcorn完成签到,获得积分10
2秒前
3秒前
有魅力的洋葱完成签到,获得积分10
3秒前
王了了完成签到 ,获得积分10
3秒前
笨本兔子警官完成签到,获得积分10
4秒前
冷酷的松思完成签到,获得积分10
4秒前
qing完成签到,获得积分10
6秒前
6秒前
卡牌大师完成签到,获得积分10
6秒前
星空完成签到,获得积分10
6秒前
汉堡包应助改之采纳,获得10
7秒前
shero快毕业完成签到 ,获得积分10
8秒前
金石为开完成签到,获得积分10
10秒前
沧笙踏歌完成签到,获得积分10
11秒前
12秒前
1111发布了新的文献求助10
15秒前
平淡爆米花完成签到,获得积分10
16秒前
夕子爱科研完成签到 ,获得积分10
20秒前
海拾月发布了新的文献求助10
22秒前
上官若男应助红莲墨生采纳,获得10
23秒前
复杂的白萱完成签到,获得积分10
23秒前
酷奔完成签到,获得积分10
23秒前
勤奋的立果完成签到 ,获得积分10
24秒前
xiaoxiao完成签到 ,获得积分10
24秒前
26秒前
667788完成签到,获得积分10
28秒前
28秒前
fangfang完成签到,获得积分10
28秒前
小二郎应助gougou采纳,获得10
29秒前
Ann完成签到,获得积分10
30秒前
31秒前
youlinn发布了新的文献求助10
34秒前
34秒前
红莲墨生完成签到,获得积分10
34秒前
全能完成签到,获得积分10
36秒前
Obliviate完成签到,获得积分10
36秒前
深情白风完成签到,获得积分10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499190
求助须知:如何正确求助?哪些是违规求助? 4596176
关于积分的说明 14452948
捐赠科研通 4529340
什么是DOI,文献DOI怎么找? 2481924
邀请新用户注册赠送积分活动 1465923
关于科研通互助平台的介绍 1438802