灰度
计算机科学
人工智能
编码(社会科学)
尖峰神经网络
计算机视觉
人工神经网络
Spike(软件开发)
感知
模式识别(心理学)
图像(数学)
统计
数学
软件工程
神经科学
生物
作者
Xiangwei Su,Bihua Zhang,Lili Cheng,Tian Mao-xin,Tianjiao Zhang,Zheng Bian,Jialei Miao,Quan Yang,Yang Xu,Bin Yu,Yang Chai,Peng Lin,Yuda Zhao
标识
DOI:10.1002/adfm.202315323
摘要
Abstract Human vision system remains alert for dangers and adopts high‐speed and low‐power coding methods to convert the image information to spike signals. To meet the demand for danger alert in machine vision, it is important to design intelligent sensors to integrate the functions of image perception and high‐efficiency coding for high‐priority analysis. Inspired by the human visual system, a MoS 2 phototransistor is introduced on SiN x substrate enabling simultaneous image perception and time‐to‐first‐spike (TTFS) coding. The device demonstrates exceptional performance in encoding 3‐bit grayscale images, achieving a low mean squared error of 0.008 and a high structural similarity index of 0.9784. Spiking neural networks (SNN) with TTFS coding achieve high recognition accuracy (98.86%) while reducing spike count by 75%. The device array also perceives motion direction and object states by converting data temporally. This work establishes a hardware foundation to promote the performance of SNNs in efficiently identifying crucial information.
科研通智能强力驱动
Strongly Powered by AbleSci AI