亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-Supervised multisource prototypical network: A novel domain adaptation method for multi-source few-shot fault diagnosis

计算机科学 源代码 领域(数学分析) 人工智能 断层(地质) 域适应 模式识别(心理学) 多源 机器学习 离群值 特征(语言学) 编码(集合论) 数据挖掘 分类器(UML) 集合(抽象数据类型) 数学 地震学 地质学 语言学 统计 哲学 操作系统 数学分析 程序设计语言
作者
Xiao Zhang,Weiguo Huang,Chuancang Ding,Jun Wang,Changqing Shen,Juanjuan Shi
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:61: 102538-102538 被引量:37
标识
DOI:10.1016/j.aei.2024.102538
摘要

Multi-source domain adaptation (MSDA) has demonstrated superior performance in intelligent fault diagnosis (IFD) compared to single-source domain adaptation (SSDA), as it can provide more comprehensive and diverse information from multiple fully-labeled source domains. However, in many real industrial scenarios, acquiring multiple fully-labeled source domains is challenging because labeling all the source domains is as expensive and laborious as labeling the target domain. Given this concern, a cross-supervised multisource prototypical network (CSMPN) is proposed for multi-source few-shot fault diagnosis. Specifically, a domain-shared and a domain-individual branch are constructed to realize shared domain alignment across all the source and target domains and individual domain alignment of source-target domain pairs, respectively. Within two branches, domain alignment is realized by the designed prototypical contrastive learning (PCL) module. In the PCL module, we propose a prototype calibration strategy to address the issue of biased prototype estimation owing to outlier samples. In addition, a two-stage pseudo-labeled sample selection mechanism is proposed to enhance the feature representation ability of two branches. At the end of the two branches, we design a cross-supervised learning (CSL) module to realize mutual and collaborative learning between the two branches, which can further improve the diagnosis performance on the target domain. Experiments on two different bearing datasets are implemented to verify the superiority of the proposed method compared with the comparison methods. Our code is available at https://github.com/YNWA-Zhang/CSMPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助春和景明采纳,获得10
1秒前
Fletcherschwann完成签到,获得积分10
7秒前
8秒前
13秒前
14秒前
17秒前
19秒前
tan发布了新的文献求助10
19秒前
21秒前
清脆元冬发布了新的文献求助10
22秒前
FashionBoy应助闫恒采纳,获得10
22秒前
明理夏波完成签到,获得积分10
24秒前
29秒前
32秒前
明理夏波发布了新的文献求助10
34秒前
38秒前
风趣雅青发布了新的文献求助30
40秒前
酷波er应助科研通管家采纳,获得30
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得10
43秒前
Criminology34应助科研通管家采纳,获得10
43秒前
Jasper应助香菜芋头采纳,获得10
43秒前
LuoLuo完成签到,获得积分10
47秒前
张匀继完成签到,获得积分10
48秒前
55秒前
丘比特应助西内!卡Q因采纳,获得10
58秒前
1分钟前
1分钟前
清脆元冬完成签到,获得积分20
1分钟前
1分钟前
早睡早起完成签到 ,获得积分10
1分钟前
1分钟前
SciGPT应助Zola采纳,获得10
1分钟前
hankongli完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
伊萨卡发布了新的文献求助30
1分钟前
1分钟前
科研通AI6应助霜降采纳,获得10
1分钟前
chenchen完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432233
求助须知:如何正确求助?哪些是违规求助? 4544929
关于积分的说明 14194849
捐赠科研通 4464245
什么是DOI,文献DOI怎么找? 2447015
邀请新用户注册赠送积分活动 1438318
关于科研通互助平台的介绍 1415157