骨关节炎
集成学习
深度学习
计算机科学
人工智能
磁共振成像
机器学习
集合预报
医学
放射科
替代医学
病理
出处
期刊:Current Medical Imaging Reviews
[Bentham Science]
日期:2024-03-28
卷期号:20
标识
DOI:10.2174/0115734056289963240318040945
摘要
Background: Accurate finding of Knee Osteoarthritis (KOA) from structural Magnetic Resonance Imaging (MRI) is a difficult task and is greatly subject to user variation. Furthermore, the identification of knee osteoarthritis (KOA) from MRI scans presents a challenge due to the limited information available. A novel methodology using an ensemble Deep Learning algorithm, combining EfficientNet-B3 and ResNext-101 architectures, aims to forecast KOA advancement, bridging the identified gap in clinical trials. Objectives: The study aims to develop a precise predictive model for knee osteoarthritis using advanced deep-learning architectures and structural MRI scan data. By utilizing an ensemble technique, the model's accuracy in predicting disease development is enhanced, surpassing the limitations of traditional biomarkers. Methods: The study used the Osteoarthritis Initiative dataset to develop an ensemble Deep Learning model that combined EfficientNet-B3 and ResNext-101 architectures. Techniques like cropping, gamma correction, and in-slice rotation were used to expand the dataset and improve the model's generalization capacity. Results: The Deep Learning model demonstrated 93% validation accuracy on the OAI dataset, accurately capturing subtle patterns of knee osteoarthritis progression. Augmentation approaches enhanced its resilience Conclusion: Our ensemble Deep Learning approach, using ResNext-101 and EfficientNet-B3 architectures, accurately predicts knee osteoarthritis courses using structural MRI data, demonstrating the importance of data augmentation for improved predictive tools.
科研通智能强力驱动
Strongly Powered by AbleSci AI