Target-Guided Diffusion Models for Unpaired Cross-modality Medical Image Translation

翻译(生物学) 计算机科学 医学影像学 人工智能 图像(数学) 模态(人机交互) 分类器(UML) 生成模型 图像翻译 计算机视觉 生成语法 模式识别(心理学) 生物化学 信使核糖核酸 基因 化学
作者
Yimin Luo,Qinyu Yang,Ziyi Liu,Zenglin Shi,Weimin Huang,Guoyan Zheng,Jun Cheng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4062-4071 被引量:4
标识
DOI:10.1109/jbhi.2024.3393870
摘要

In a clinical setting, the acquisition of certain medical image modality is often unavailable due to various considerations such as cost, radiation, etc. Therefore, unpaired cross-modality translation techniques, which involve training on the unpaired data and synthesizing the target modality with the guidance of the acquired source modality, are of great interest. Previous methods for synthesizing target medical images are to establish one-shot mapping through generative adversarial networks (GANs). As promising alternatives to GANs, diffusion models have recently received wide interests in generative tasks. In this paper, we propose a target-guided diffusion model (TGDM) for unpaired cross-modality medical image translation. For training, to encourage our diffusion model to learn more visual concepts, we adopted a perception prioritized weight scheme (P2W) to the training objectives. For sampling, a pre-trained classifier is adopted in the reverse process to relieve modality-specific remnants from source data. Experiments on both brain MRI-CT and prostate MRI-US datasets demonstrate that the proposed method achieves a visually realistic result that mimics a vivid anatomical section of the target organ. In addition, we have also conducted a subjective assessment based on the synthesized samples to further validate the clinical value of TGDM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
沉静傲霜发布了新的文献求助10
刚刚
whisper发布了新的文献求助10
刚刚
刚刚
1秒前
tjuer完成签到,获得积分10
1秒前
轻雨完成签到,获得积分10
2秒前
2秒前
2秒前
Pom发布了新的文献求助10
3秒前
3秒前
3秒前
谦让谷菱发布了新的文献求助10
4秒前
4秒前
grzzz完成签到,获得积分10
4秒前
ldy完成签到,获得积分10
4秒前
丘比特应助积极的邪欢采纳,获得10
5秒前
5秒前
5秒前
小蘑菇应助whisper采纳,获得10
6秒前
3033完成签到,获得积分10
6秒前
乐乐应助杨雪妮采纳,获得10
7秒前
遐蝶发布了新的文献求助10
7秒前
7秒前
JamesPei应助随便取采纳,获得80
7秒前
yss发布了新的文献求助10
7秒前
健忘英姑发布了新的文献求助10
7秒前
yy完成签到,获得积分20
8秒前
8秒前
yang杨完成签到,获得积分10
8秒前
8秒前
活泼的烙完成签到 ,获得积分10
9秒前
漂亮的海瑶完成签到 ,获得积分10
9秒前
YY发布了新的文献求助10
9秒前
赘婿应助Wen3197312602采纳,获得10
9秒前
CipherSage应助uui采纳,获得10
9秒前
10秒前
GG完成签到,获得积分20
10秒前
11秒前
yuanquaner发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950435
求助须知:如何正确求助?哪些是违规求助? 3495874
关于积分的说明 11079268
捐赠科研通 3226319
什么是DOI,文献DOI怎么找? 1783751
邀请新用户注册赠送积分活动 867787
科研通“疑难数据库(出版商)”最低求助积分说明 800942