An overview of machine learning classification techniques

计算机科学 机器学习 人工智能
作者
Amer F.A.H. Alnuaimi,Tasnim H.K. Al-Baldawi
出处
期刊:BIO web of conferences [EDP Sciences]
卷期号:97: 00133-00133 被引量:17
标识
DOI:10.1051/bioconf/20249700133
摘要

Machine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed for categorical output. The objective of supervised learning is to optimize models that can predict class labels based on input features. Classification is a technique used to predict similar information based on the values of a categorical target or class variable. It is a valuable method for analyzing various types of statistical data. These algorithms have diverse applications, including image classification, predictive modeling, and data mining. This study aims to provide a quick reference guide to the most widely used basic classification methods in machine learning, with advantages and disadvantages. Of course, a single article cannot be a complete review of all supervised machine learning classification algorithms. It serves as a valuable resource for both academics and researchers, providing a guide for all newcomers to the field, thereby enriching their comprehension of classification methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3900完成签到 ,获得积分10
刚刚
KK发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
lijianguo应助兴奋的阿黄采纳,获得10
2秒前
老肖发布了新的文献求助10
2秒前
Ava应助bella采纳,获得10
3秒前
4秒前
贾不可完成签到,获得积分10
5秒前
科研通AI5应助周周采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
jimskylxk完成签到,获得积分10
7秒前
整齐醉波完成签到 ,获得积分10
7秒前
7秒前
7秒前
yyyyyy发布了新的文献求助10
8秒前
cuc发布了新的文献求助10
8秒前
9秒前
神秘玩家完成签到 ,获得积分10
10秒前
希望天下0贩的0应助yhnsag采纳,获得10
10秒前
菠萝炒蛋加饭完成签到 ,获得积分10
10秒前
ATLI应助贪玩的听荷采纳,获得10
10秒前
酷炫的之柔完成签到,获得积分10
11秒前
火星上钢笔完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
波比大王完成签到,获得积分10
12秒前
月亮啊发布了新的文献求助10
12秒前
才富郭完成签到 ,获得积分10
13秒前
天天发布了新的文献求助10
13秒前
英姑应助啦啦啦采纳,获得10
15秒前
16秒前
万恶的小蕊蕊完成签到 ,获得积分10
17秒前
17秒前
Vincy完成签到 ,获得积分10
19秒前
火火完成签到 ,获得积分10
19秒前
20秒前
ShellyMaya完成签到 ,获得积分10
21秒前
21秒前
後zgw完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662463
求助须知:如何正确求助?哪些是违规求助? 3223261
关于积分的说明 9750686
捐赠科研通 2933115
什么是DOI,文献DOI怎么找? 1605919
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743