Heterogeneous Fusion and Integrity Learning Network for RGB-D Salient Object Detection

人工智能 计算机科学 突出 融合 计算机视觉 对象(语法) RGB颜色模型 模式识别(心理学) 心理学 哲学 语言学
作者
Haorao Gao,Yiming Su,Fasheng Wang,Haojie Li
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (7): 1-24 被引量:11
标识
DOI:10.1145/3656476
摘要

While significant progress has been made in recent years in the field of salient object detection, there are still limitations in heterogeneous modality fusion and salient feature integrity learning. The former is primarily attributed to a paucity of attention from researchers to the fusion of cross-scale information between different modalities during processing multi-modal heterogeneous data, coupled with an absence of methods for adaptive control of their respective contributions. The latter constraint stems from the shortcomings in existing approaches concerning the prediction of salient region’s integrity. To address these problems, we propose a Heterogeneous Fusion and Integrity Learning Network for RGB-D Salient Object Detection (HFIL-Net). In response to the first challenge, we design an Advanced Semantic Guidance Aggregation (ASGA) module, which utilizes three fusion blocks to achieve the aggregation of three types of information: within-scale cross-modal, within-modal cross-scale, and cross-modal cross-scale. In addition, we embed the local fusion factor matrices in the ASGA module and utilize the global fusion factor matrices in the Multi-modal Information Adaptive Fusion module to control the contributions adaptively from different perspectives during the fusion process. For the second issue, we introduce the Feature Integrity Learning and Refinement Module. It leverages the idea of ”part-whole” relationships from capsule networks to learn feature integrity and further refine the learned features through attention mechanisms. Extensive experimental results demonstrate that our proposed HFIL-Net outperforms over 17 state-of-the-art detection methods in testing across seven challenging standard datasets. Codes and results are available on https://github.com/BojueGao/HFIL-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪冷之关注了科研通微信公众号
1秒前
perfumei完成签到,获得积分10
1秒前
罗大大发布了新的文献求助10
1秒前
研友_VZG7GZ应助liuuuuu采纳,获得10
2秒前
2秒前
雨齐完成签到,获得积分10
2秒前
李明泰完成签到,获得积分10
4秒前
酷波er应助yangjun采纳,获得10
4秒前
4秒前
鸡蛋完成签到 ,获得积分10
5秒前
zhou123432完成签到,获得积分20
5秒前
杜萌萌完成签到,获得积分10
6秒前
李健应助十一嘞采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
zcl应助科研通管家采纳,获得20
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
浮生若梦应助科研通管家采纳,获得10
8秒前
浮生若梦应助科研通管家采纳,获得10
8秒前
浮生若梦应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得30
8秒前
9秒前
善学以致用应助康康采纳,获得10
9秒前
王欣茹发布了新的文献求助10
9秒前
海绵宝宝发布了新的文献求助10
10秒前
11秒前
风中黎昕完成签到 ,获得积分10
12秒前
12秒前
12秒前
zhongying发布了新的文献求助10
13秒前
Dr_JennyZ完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262687
求助须知:如何正确求助?哪些是违规求助? 4423535
关于积分的说明 13770052
捐赠科研通 4298274
什么是DOI,文献DOI怎么找? 2358345
邀请新用户注册赠送积分活动 1354694
关于科研通互助平台的介绍 1315914