亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Heterogeneous Fusion and Integrity Learning Network for RGB-D Salient Object Detection

人工智能 计算机科学 突出 融合 计算机视觉 对象(语法) RGB颜色模型 模式识别(心理学) 心理学 哲学 语言学
作者
Haorao Gao,Yiming Su,Fasheng Wang,Haojie Li
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (7): 1-24 被引量:11
标识
DOI:10.1145/3656476
摘要

While significant progress has been made in recent years in the field of salient object detection, there are still limitations in heterogeneous modality fusion and salient feature integrity learning. The former is primarily attributed to a paucity of attention from researchers to the fusion of cross-scale information between different modalities during processing multi-modal heterogeneous data, coupled with an absence of methods for adaptive control of their respective contributions. The latter constraint stems from the shortcomings in existing approaches concerning the prediction of salient region’s integrity. To address these problems, we propose a Heterogeneous Fusion and Integrity Learning Network for RGB-D Salient Object Detection (HFIL-Net). In response to the first challenge, we design an Advanced Semantic Guidance Aggregation (ASGA) module, which utilizes three fusion blocks to achieve the aggregation of three types of information: within-scale cross-modal, within-modal cross-scale, and cross-modal cross-scale. In addition, we embed the local fusion factor matrices in the ASGA module and utilize the global fusion factor matrices in the Multi-modal Information Adaptive Fusion module to control the contributions adaptively from different perspectives during the fusion process. For the second issue, we introduce the Feature Integrity Learning and Refinement Module. It leverages the idea of ”part-whole” relationships from capsule networks to learn feature integrity and further refine the learned features through attention mechanisms. Extensive experimental results demonstrate that our proposed HFIL-Net outperforms over 17 state-of-the-art detection methods in testing across seven challenging standard datasets. Codes and results are available on https://github.com/BojueGao/HFIL-Net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
Sakura完成签到 ,获得积分10
24秒前
andrele发布了新的文献求助10
46秒前
BowieHuang应助科研通管家采纳,获得10
46秒前
57秒前
Able完成签到,获得积分10
1分钟前
Wei发布了新的文献求助50
1分钟前
科研通AI6应助月光采纳,获得10
1分钟前
隐形曼青应助Yashyi采纳,获得10
2分钟前
ajing完成签到,获得积分10
2分钟前
2分钟前
2分钟前
wrl2023完成签到,获得积分10
2分钟前
Yashyi发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
andrele发布了新的文献求助10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
3分钟前
潜行者完成签到 ,获得积分10
3分钟前
月光发布了新的文献求助10
3分钟前
3分钟前
3分钟前
张瀚文发布了新的文献求助10
3分钟前
张瀚文完成签到,获得积分10
3分钟前
4分钟前
懒癌晚期发布了新的文献求助10
4分钟前
lsl完成签到 ,获得积分10
4分钟前
4分钟前
wangermazi完成签到,获得积分0
4分钟前
戴云溥应助科研通管家采纳,获得30
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
懒癌晚期发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590522
求助须知:如何正确求助?哪些是违规求助? 4674789
关于积分的说明 14795291
捐赠科研通 4632842
什么是DOI,文献DOI怎么找? 2532806
邀请新用户注册赠送积分活动 1501315
关于科研通互助平台的介绍 1468687