Heterogeneous Fusion and Integrity Learning Network for RGB-D Salient Object Detection

人工智能 计算机科学 突出 融合 计算机视觉 对象(语法) RGB颜色模型 模式识别(心理学) 心理学 哲学 语言学
作者
Haorao Gao,Yiming Su,Fasheng Wang,Haojie Li
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (7): 1-24 被引量:4
标识
DOI:10.1145/3656476
摘要

While significant progress has been made in recent years in the field of salient object detection, there are still limitations in heterogeneous modality fusion and salient feature integrity learning. The former is primarily attributed to a paucity of attention from researchers to the fusion of cross-scale information between different modalities during processing multi-modal heterogeneous data, coupled with an absence of methods for adaptive control of their respective contributions. The latter constraint stems from the shortcomings in existing approaches concerning the prediction of salient region’s integrity. To address these problems, we propose a Heterogeneous Fusion and Integrity Learning Network for RGB-D Salient Object Detection (HFIL-Net). In response to the first challenge, we design an Advanced Semantic Guidance Aggregation (ASGA) module, which utilizes three fusion blocks to achieve the aggregation of three types of information: within-scale cross-modal, within-modal cross-scale, and cross-modal cross-scale. In addition, we embed the local fusion factor matrices in the ASGA module and utilize the global fusion factor matrices in the Multi-modal Information Adaptive Fusion module to control the contributions adaptively from different perspectives during the fusion process. For the second issue, we introduce the Feature Integrity Learning and Refinement Module. It leverages the idea of ”part-whole” relationships from capsule networks to learn feature integrity and further refine the learned features through attention mechanisms. Extensive experimental results demonstrate that our proposed HFIL-Net outperforms over 17 state-of-the-art detection methods in testing across seven challenging standard datasets. Codes and results are available on https://github.com/BojueGao/HFIL-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
酷炫的小紫完成签到 ,获得积分10
2秒前
星期一发布了新的文献求助10
3秒前
大个应助旭日采纳,获得10
3秒前
4秒前
4秒前
4秒前
小小发布了新的文献求助10
5秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
冷冷完成签到 ,获得积分10
7秒前
7秒前
cocolu给yolenco的求助进行了留言
8秒前
wenjiahua发布了新的文献求助10
8秒前
多哈热水发布了新的文献求助10
9秒前
雨林发布了新的文献求助10
11秒前
科目三应助小尚要加油采纳,获得10
11秒前
藤大阳发布了新的文献求助10
11秒前
唐晓秦应助淡淡菠萝采纳,获得10
12秒前
无花果应助杰青采纳,获得10
13秒前
Lucas应助仙林AK47采纳,获得10
13秒前
13秒前
15秒前
16秒前
Wsyyy完成签到 ,获得积分10
16秒前
忧虑的初晴应助枫叶采纳,获得20
18秒前
serayu123完成签到,获得积分10
19秒前
19秒前
LYH发布了新的文献求助10
19秒前
我有一只羊完成签到,获得积分10
20秒前
djc发布了新的文献求助10
20秒前
落日余晖完成签到,获得积分10
23秒前
桐桐应助多哈热水采纳,获得10
24秒前
彩色映雁完成签到 ,获得积分10
24秒前
24秒前
25秒前
Alina完成签到 ,获得积分10
27秒前
远山完成签到,获得积分10
28秒前
30秒前
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441499
求助须知:如何正确求助?哪些是违规求助? 3038123
关于积分的说明 8970625
捐赠科研通 2726409
什么是DOI,文献DOI怎么找? 1495471
科研通“疑难数据库(出版商)”最低求助积分说明 691208
邀请新用户注册赠送积分活动 688212