Heterogeneous Fusion and Integrity Learning Network for RGB-D Salient Object Detection

人工智能 计算机科学 突出 融合 计算机视觉 对象(语法) RGB颜色模型 模式识别(心理学) 心理学 哲学 语言学
作者
Haorao Gao,Yiming Su,Fasheng Wang,Haojie Li
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (7): 1-24 被引量:11
标识
DOI:10.1145/3656476
摘要

While significant progress has been made in recent years in the field of salient object detection, there are still limitations in heterogeneous modality fusion and salient feature integrity learning. The former is primarily attributed to a paucity of attention from researchers to the fusion of cross-scale information between different modalities during processing multi-modal heterogeneous data, coupled with an absence of methods for adaptive control of their respective contributions. The latter constraint stems from the shortcomings in existing approaches concerning the prediction of salient region’s integrity. To address these problems, we propose a Heterogeneous Fusion and Integrity Learning Network for RGB-D Salient Object Detection (HFIL-Net). In response to the first challenge, we design an Advanced Semantic Guidance Aggregation (ASGA) module, which utilizes three fusion blocks to achieve the aggregation of three types of information: within-scale cross-modal, within-modal cross-scale, and cross-modal cross-scale. In addition, we embed the local fusion factor matrices in the ASGA module and utilize the global fusion factor matrices in the Multi-modal Information Adaptive Fusion module to control the contributions adaptively from different perspectives during the fusion process. For the second issue, we introduce the Feature Integrity Learning and Refinement Module. It leverages the idea of ”part-whole” relationships from capsule networks to learn feature integrity and further refine the learned features through attention mechanisms. Extensive experimental results demonstrate that our proposed HFIL-Net outperforms over 17 state-of-the-art detection methods in testing across seven challenging standard datasets. Codes and results are available on https://github.com/BojueGao/HFIL-Net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
香蕉诗蕊应助科研通管家采纳,获得10
1秒前
Gauss应助科研通管家采纳,获得30
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
香蕉诗蕊应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
lsl应助科研通管家采纳,获得20
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
2秒前
充电宝应助好不了一丶采纳,获得10
2秒前
2秒前
yangbo完成签到,获得积分10
3秒前
小小菜鸟完成签到 ,获得积分20
3秒前
123完成签到,获得积分10
4秒前
王帅发布了新的文献求助10
6秒前
危机的绯发布了新的文献求助10
6秒前
鱼鱼完成签到,获得积分10
6秒前
希望天下0贩的0应助lym54采纳,获得10
6秒前
科研通AI6应助木子采纳,获得10
6秒前
6秒前
7秒前
愉快的海完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
Azyyyy完成签到,获得积分10
11秒前
充电宝应助吃薯条采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812