A physics-constrained data-driven workflow for predicting bottom hole pressure using a hybrid model of artificial neural network and particle swarm optimization

粒子群优化 人工神经网络 计算机科学 深孔钻探 人工智能 数据驱动 算法 数学优化 机器学习 钻探 工程类 数学 机械工程
作者
Zhaopeng Zhu,Zihao Liu,Xianzhi Song,Shuo Zhu,Mengmeng Zhou,Gensheng Li,Shiming Duan,Baodong Ma,Shanlin Ye,Rui Zhang
标识
DOI:10.1016/j.geoen.2023.211625
摘要

Accurate and efficient prediction of bottom hole pressure (BHP) is important for managed pressure drilling (MPD), which is essential to ensure the safety of drilling in complex formations with a narrow pore/fracture pressure envelope. Without idealized assumptions and iterative solutions, the data-driven machine learning model has higher prediction accuracy and efficiency than the mechanistic hydraulics model. However, the machine learning models suffering from the significant impact of noise data and the strict restriction of the data field, often leads to anomalous deviations. Physical constraints are inherent mappings between output values and characteristic variables, which can be applied to model training to improve the robustness of the model. In this study, wellbore flow mechanism is considered as the physical constraint, and a physics-constrained data-driven workflow is proposed for stable prediction of BHP, which is more consistent with the hydraulic mechanism. Firstly, more than 400,000 groups of field pressure data are extracted as the training dataset by an automatic identification method of drilling state. And twelve characteristic parameters of BHP were optimized, including inlet flow rate, outlet density and wellhead pressure. Embedding physical constraints into the loss function of artificial neural network (ANN) as penalty terms can induce ANN model output results within the wellbore flow mechanism. Finally, particle swarm algorithm is introduced to solve the weight and bias of ANN globally without the derivative of the restructuring loss function. The proposed model is verified based on the field pressure data. It could be found that both experiential and knowledge-based constraints can improve the accuracy and stability of the ANN model, the prediction error is significantly reduced, MRE, RMSE and MAE were respectively reduced to 0.46%, 0.34 MPa and 0.27 MPa. RMSE decreased by 20.9%, MRE and MAE decreased by 19.3% and 18.1%, respectively. Meanwhile, the R2 of the model reached 0.9871. Sensitive parameters such as flow rate have a more significant effect on the prediction accuracy of BHP, while non-sensitive parameters such as mud density can eliminate the abnormal deviation of BHP more effectively, and the constraints of multiple parameters can be superimposed. Therefore, optimizing the constraint combination according to the fluctuation characteristics of BHP is crucial to improve the accuracy and stability of the ANN model. This is an innovative exploration of the physical constraints on the data-driven model of BHP, which can provide accurate and efficient references for managed pressure drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
月关发布了新的文献求助10
1秒前
1秒前
斯文败类应助sam1514采纳,获得10
1秒前
酷波er应助刘智山采纳,获得10
2秒前
2秒前
Jacklzu完成签到,获得积分10
2秒前
wrwywzx完成签到,获得积分10
3秒前
小叶大王完成签到,获得积分20
3秒前
4秒前
4秒前
5秒前
Joleneli100完成签到,获得积分10
5秒前
bao驳回了无花果应助
5秒前
5秒前
星辰大海应助渊_采纳,获得10
5秒前
思绪完成签到 ,获得积分10
6秒前
YEHEI完成签到 ,获得积分10
6秒前
李健应助Na2CO3采纳,获得10
6秒前
vesta完成签到,获得积分10
6秒前
6秒前
7秒前
GG发布了新的文献求助10
7秒前
OKOK发布了新的文献求助10
7秒前
汉堡一号完成签到,获得积分10
7秒前
7秒前
7秒前
Patrick完成签到,获得积分20
7秒前
7秒前
026发布了新的文献求助10
7秒前
richestchen完成签到,获得积分10
7秒前
8秒前
LSY发布了新的文献求助10
8秒前
junjie发布了新的文献求助10
8秒前
与秋逐鹿发布了新的文献求助10
9秒前
科研通AI6应助邓谷云采纳,获得10
9秒前
9秒前
风云完成签到,获得积分10
9秒前
所所应助harden采纳,获得10
9秒前
研友_VZG7GZ应助禾几采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071804
求助须知:如何正确求助?哪些是违规求助? 4292378
关于积分的说明 13374385
捐赠科研通 4113281
什么是DOI,文献DOI怎么找? 2252316
邀请新用户注册赠送积分活动 1257279
关于科研通互助平台的介绍 1190064