A physics-constrained data-driven workflow for predicting bottom hole pressure using a hybrid model of artificial neural network and particle swarm optimization

粒子群优化 人工神经网络 计算机科学 深孔钻探 人工智能 数据驱动 算法 数学优化 机器学习 钻探 工程类 数学 机械工程
作者
Zhaopeng Zhu,Zihao Liu,Xianzhi Song,Shuo Zhu,Mengmeng Zhou,Gensheng Li,Shiming Duan,Baodong Ma,Shanlin Ye,Rui Zhang
标识
DOI:10.1016/j.geoen.2023.211625
摘要

Accurate and efficient prediction of bottom hole pressure (BHP) is important for managed pressure drilling (MPD), which is essential to ensure the safety of drilling in complex formations with a narrow pore/fracture pressure envelope. Without idealized assumptions and iterative solutions, the data-driven machine learning model has higher prediction accuracy and efficiency than the mechanistic hydraulics model. However, the machine learning models suffering from the significant impact of noise data and the strict restriction of the data field, often leads to anomalous deviations. Physical constraints are inherent mappings between output values and characteristic variables, which can be applied to model training to improve the robustness of the model. In this study, wellbore flow mechanism is considered as the physical constraint, and a physics-constrained data-driven workflow is proposed for stable prediction of BHP, which is more consistent with the hydraulic mechanism. Firstly, more than 400,000 groups of field pressure data are extracted as the training dataset by an automatic identification method of drilling state. And twelve characteristic parameters of BHP were optimized, including inlet flow rate, outlet density and wellhead pressure. Embedding physical constraints into the loss function of artificial neural network (ANN) as penalty terms can induce ANN model output results within the wellbore flow mechanism. Finally, particle swarm algorithm is introduced to solve the weight and bias of ANN globally without the derivative of the restructuring loss function. The proposed model is verified based on the field pressure data. It could be found that both experiential and knowledge-based constraints can improve the accuracy and stability of the ANN model, the prediction error is significantly reduced, MRE, RMSE and MAE were respectively reduced to 0.46%, 0.34 MPa and 0.27 MPa. RMSE decreased by 20.9%, MRE and MAE decreased by 19.3% and 18.1%, respectively. Meanwhile, the R2 of the model reached 0.9871. Sensitive parameters such as flow rate have a more significant effect on the prediction accuracy of BHP, while non-sensitive parameters such as mud density can eliminate the abnormal deviation of BHP more effectively, and the constraints of multiple parameters can be superimposed. Therefore, optimizing the constraint combination according to the fluctuation characteristics of BHP is crucial to improve the accuracy and stability of the ANN model. This is an innovative exploration of the physical constraints on the data-driven model of BHP, which can provide accurate and efficient references for managed pressure drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助123采纳,获得30
刚刚
烟花应助pi采纳,获得10
1秒前
汉堡包应助小木木壮采纳,获得10
1秒前
1秒前
yl发布了新的文献求助30
1秒前
菲菲呀发布了新的文献求助10
1秒前
1秒前
科研通AI5应助禾泽采纳,获得30
2秒前
坚强的樱发布了新的文献求助10
2秒前
英俊梦槐完成签到,获得积分10
2秒前
123发布了新的文献求助10
3秒前
3秒前
3秒前
白泽发布了新的文献求助10
4秒前
一条贤与发布了新的文献求助20
4秒前
4秒前
英俊谷秋完成签到,获得积分10
4秒前
4秒前
通~发布了新的文献求助10
5秒前
所所应助火星探险采纳,获得10
5秒前
5秒前
Guoyeye完成签到,获得积分10
5秒前
6秒前
阿芙乐尔完成签到 ,获得积分10
6秒前
_呱_发布了新的文献求助30
7秒前
7秒前
7秒前
Akim应助眼睛大的金鱼采纳,获得10
8秒前
8秒前
8秒前
9秒前
legend完成签到,获得积分10
9秒前
猪猪hero发布了新的文献求助10
9秒前
善学以致用应助Scidog采纳,获得10
9秒前
白泽完成签到 ,获得积分10
10秒前
我是老大应助乐乱采纳,获得10
10秒前
张宁波完成签到,获得积分10
10秒前
酷波er应助www采纳,获得10
10秒前
XXF发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794