清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A physics-constrained data-driven workflow for predicting bottom hole pressure using a hybrid model of artificial neural network and particle swarm optimization

粒子群优化 人工神经网络 计算机科学 深孔钻探 人工智能 数据驱动 算法 数学优化 机器学习 钻探 工程类 数学 机械工程
作者
Zhaopeng Zhu,Zihao Liu,Xianzhi Song,Shuo Zhu,Mengmeng Zhou,Gensheng Li,Shiming Duan,Baodong Ma,Shanlin Ye,Rui Zhang
标识
DOI:10.1016/j.geoen.2023.211625
摘要

Accurate and efficient prediction of bottom hole pressure (BHP) is important for managed pressure drilling (MPD), which is essential to ensure the safety of drilling in complex formations with a narrow pore/fracture pressure envelope. Without idealized assumptions and iterative solutions, the data-driven machine learning model has higher prediction accuracy and efficiency than the mechanistic hydraulics model. However, the machine learning models suffering from the significant impact of noise data and the strict restriction of the data field, often leads to anomalous deviations. Physical constraints are inherent mappings between output values and characteristic variables, which can be applied to model training to improve the robustness of the model. In this study, wellbore flow mechanism is considered as the physical constraint, and a physics-constrained data-driven workflow is proposed for stable prediction of BHP, which is more consistent with the hydraulic mechanism. Firstly, more than 400,000 groups of field pressure data are extracted as the training dataset by an automatic identification method of drilling state. And twelve characteristic parameters of BHP were optimized, including inlet flow rate, outlet density and wellhead pressure. Embedding physical constraints into the loss function of artificial neural network (ANN) as penalty terms can induce ANN model output results within the wellbore flow mechanism. Finally, particle swarm algorithm is introduced to solve the weight and bias of ANN globally without the derivative of the restructuring loss function. The proposed model is verified based on the field pressure data. It could be found that both experiential and knowledge-based constraints can improve the accuracy and stability of the ANN model, the prediction error is significantly reduced, MRE, RMSE and MAE were respectively reduced to 0.46%, 0.34 MPa and 0.27 MPa. RMSE decreased by 20.9%, MRE and MAE decreased by 19.3% and 18.1%, respectively. Meanwhile, the R2 of the model reached 0.9871. Sensitive parameters such as flow rate have a more significant effect on the prediction accuracy of BHP, while non-sensitive parameters such as mud density can eliminate the abnormal deviation of BHP more effectively, and the constraints of multiple parameters can be superimposed. Therefore, optimizing the constraint combination according to the fluctuation characteristics of BHP is crucial to improve the accuracy and stability of the ANN model. This is an innovative exploration of the physical constraints on the data-driven model of BHP, which can provide accurate and efficient references for managed pressure drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WLY完成签到 ,获得积分10
16秒前
大生蚝完成签到 ,获得积分10
23秒前
子月之路完成签到,获得积分10
23秒前
naczx完成签到,获得积分0
35秒前
深情的凝云完成签到 ,获得积分10
46秒前
RebeccaHe应助Zex采纳,获得10
52秒前
家迎松完成签到,获得积分10
1分钟前
雷九万班完成签到 ,获得积分10
1分钟前
不配.应助Zex采纳,获得10
1分钟前
1分钟前
浩气长存完成签到 ,获得积分10
1分钟前
天问完成签到 ,获得积分10
1分钟前
帅气的沧海完成签到 ,获得积分10
1分钟前
freemaisui应助Zex采纳,获得10
1分钟前
Xii完成签到 ,获得积分10
1分钟前
GankhuyagJavzan完成签到,获得积分10
1分钟前
xun完成签到,获得积分20
1分钟前
等待的熊猫完成签到 ,获得积分10
2分钟前
段采萱完成签到 ,获得积分10
2分钟前
科研通AI2S应助belssingoo采纳,获得10
2分钟前
yuntong完成签到 ,获得积分10
2分钟前
焚心结完成签到 ,获得积分10
2分钟前
ZHANG完成签到 ,获得积分10
2分钟前
Skywings完成签到,获得积分10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
Singularity应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
陆黑暗完成签到 ,获得积分10
3分钟前
cyskdsn完成签到 ,获得积分10
3分钟前
应夏山完成签到 ,获得积分10
3分钟前
独步出营完成签到 ,获得积分10
3分钟前
郑先生完成签到 ,获得积分10
3分钟前
luffy189完成签到 ,获得积分10
4分钟前
迅速的幻雪完成签到 ,获得积分10
4分钟前
su完成签到 ,获得积分10
4分钟前
gobi完成签到 ,获得积分10
4分钟前
Singularity应助科研通管家采纳,获得10
4分钟前
Singularity应助科研通管家采纳,获得10
4分钟前
燕山堂完成签到 ,获得积分10
4分钟前
刘天虎研通完成签到 ,获得积分10
4分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229761
求助须知:如何正确求助?哪些是违规求助? 2877260
关于积分的说明 8198668
捐赠科研通 2544754
什么是DOI,文献DOI怎么找? 1374645
科研通“疑难数据库(出版商)”最低求助积分说明 647024
邀请新用户注册赠送积分活动 621851