A physics-constrained data-driven workflow for predicting bottom hole pressure using a hybrid model of artificial neural network and particle swarm optimization

粒子群优化 人工神经网络 计算机科学 深孔钻探 人工智能 数据驱动 算法 数学优化 机器学习 钻探 工程类 数学 机械工程
作者
Zhaopeng Zhu,Zihao Liu,Xianzhi Song,Shuo Zhu,Mengmeng Zhou,Gensheng Li,Shiming Duan,Baodong Ma,Shanlin Ye,Rui Zhang
标识
DOI:10.1016/j.geoen.2023.211625
摘要

Accurate and efficient prediction of bottom hole pressure (BHP) is important for managed pressure drilling (MPD), which is essential to ensure the safety of drilling in complex formations with a narrow pore/fracture pressure envelope. Without idealized assumptions and iterative solutions, the data-driven machine learning model has higher prediction accuracy and efficiency than the mechanistic hydraulics model. However, the machine learning models suffering from the significant impact of noise data and the strict restriction of the data field, often leads to anomalous deviations. Physical constraints are inherent mappings between output values and characteristic variables, which can be applied to model training to improve the robustness of the model. In this study, wellbore flow mechanism is considered as the physical constraint, and a physics-constrained data-driven workflow is proposed for stable prediction of BHP, which is more consistent with the hydraulic mechanism. Firstly, more than 400,000 groups of field pressure data are extracted as the training dataset by an automatic identification method of drilling state. And twelve characteristic parameters of BHP were optimized, including inlet flow rate, outlet density and wellhead pressure. Embedding physical constraints into the loss function of artificial neural network (ANN) as penalty terms can induce ANN model output results within the wellbore flow mechanism. Finally, particle swarm algorithm is introduced to solve the weight and bias of ANN globally without the derivative of the restructuring loss function. The proposed model is verified based on the field pressure data. It could be found that both experiential and knowledge-based constraints can improve the accuracy and stability of the ANN model, the prediction error is significantly reduced, MRE, RMSE and MAE were respectively reduced to 0.46%, 0.34 MPa and 0.27 MPa. RMSE decreased by 20.9%, MRE and MAE decreased by 19.3% and 18.1%, respectively. Meanwhile, the R2 of the model reached 0.9871. Sensitive parameters such as flow rate have a more significant effect on the prediction accuracy of BHP, while non-sensitive parameters such as mud density can eliminate the abnormal deviation of BHP more effectively, and the constraints of multiple parameters can be superimposed. Therefore, optimizing the constraint combination according to the fluctuation characteristics of BHP is crucial to improve the accuracy and stability of the ANN model. This is an innovative exploration of the physical constraints on the data-driven model of BHP, which can provide accurate and efficient references for managed pressure drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天上白玉京完成签到,获得积分10
2秒前
北风发布了新的文献求助10
2秒前
PPP给马騳骉的求助进行了留言
2秒前
chaosxu发布了新的文献求助30
2秒前
排骨年糕完成签到 ,获得积分10
3秒前
3秒前
3秒前
虚幻靖易发布了新的文献求助10
4秒前
wen完成签到,获得积分10
4秒前
LEMONS应助田野采纳,获得10
4秒前
Rainbow完成签到,获得积分10
4秒前
5秒前
自转无风发布了新的文献求助10
5秒前
木辛艺完成签到,获得积分20
5秒前
6秒前
李健的小迷弟应助刚子采纳,获得10
6秒前
iboy发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
iwsaml完成签到 ,获得积分10
8秒前
tt发布了新的文献求助10
8秒前
march完成签到,获得积分10
8秒前
8秒前
闹闹完成签到,获得积分10
9秒前
Light完成签到,获得积分10
9秒前
愉快谷芹完成签到 ,获得积分10
9秒前
hujlina完成签到,获得积分10
9秒前
clayluo完成签到,获得积分10
9秒前
点凌蝶完成签到,获得积分10
9秒前
yznfly应助独特雅绿采纳,获得30
10秒前
mnliao完成签到,获得积分10
11秒前
研友_8yNl3L发布了新的文献求助30
11秒前
xixi完成签到 ,获得积分10
11秒前
科文完成签到,获得积分10
12秒前
天天快乐应助zeppeli采纳,获得10
12秒前
田様应助152455采纳,获得10
13秒前
clayluo发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953650
求助须知:如何正确求助?哪些是违规求助? 3499409
关于积分的说明 11095552
捐赠科研通 3229987
什么是DOI,文献DOI怎么找? 1785841
邀请新用户注册赠送积分活动 869592
科研通“疑难数据库(出版商)”最低求助积分说明 801479