同步(交流)
控制理论(社会学)
人工神经网络
计算机科学
瞬态(计算机编程)
过程(计算)
Lyapunov稳定性
方案(数学)
理论(学习稳定性)
控制(管理)
数学
人工智能
机器学习
电信
操作系统
频道(广播)
数学分析
作者
Zhining Wang,Aili Fan,Youming Lei,Yating Wang,Lin Du
出处
期刊:Soft Computing
[Springer Nature]
日期:2023-02-20
卷期号:27 (17): 12587-12593
标识
DOI:10.1007/s00500-023-07905-7
摘要
In this paper, the prescribed performance synchronization problem is addressed for a class of neural networks with impulsive effects. According to the prescribed performance control principle and the Lyapunov’s second stability theorem, a preset performance control protocol is designed. For neural networks with impulsive effects, the proposed control scheme can not only guarantee the steady-state performance of synchronization errors, but also ensure the transient performance of the synchronization process. This improves the performance of the neural networks effectively. Finally, a numerical simulation is given to illustrate the effectiveness and feasibility of the proposed control scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI