Suppressing charge injection and preventing the extension of electrical trees of polymer-based composites through two-dimensional metal–organic frameworks nanosheets

材料科学 电介质 电容器 聚合物 金属有机骨架 复合材料 复合数 纳米技术 化学工程 光电子学 化学 电气工程 电压 有机化学 工程类 吸附
作者
Zhicheng Li,Zhongbin Pan,Fan Xu,Hao Wang,Yu Cheng,Xiangping Ding,Songhan Shi,Peng Li,Jinjun Liu,Jiwei Zhai
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:466: 143328-143328 被引量:5
标识
DOI:10.1016/j.cej.2023.143328
摘要

Electrostatic capacitors have become an essential enabling technology in electronics and electrical power systems. The utilization of composite dielectric has significantly improved the discharged energy density (Ud). Nevertheless, optimizing the compatibility between fillers and polymers to further achieve miniaturization, lightweight, and integration remains a significant challenge. In this work, a novel composite film composed of two-dimensional (2D) metal–organic framework [Ni3(OH)2(1,4-benzenedicarboxylate)2-(H2O)4]⋅2H2O (2D Ni-MOF) nanosheets and poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) have been prepared. 2D Ni-MOF nanosheets possess superior interface area and dispersibility, which could interact well with the polymer matrix to form high-quality composite films. Meanwhile, Ni-MOF nanosheets act as ordered scattering centers to prevent the extension of electrical trees and introduce deep trap energy levels to trap the generated carriers. Remarkably, the ultralow content of 2D Ni-MOF nanosheets (∼0.25 wt%) synergistically improves dielectric constant and breakdown strength, thus achieving highly Ud of 21.16 J/cm3 at 600 MV/m. Such a simple, environmentally friendly, and mass-producible preparation process explores a promising new paradigm for high-performance electrostatic capacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
钰宁发布了新的文献求助10
刚刚
灵巧荆发布了新的文献求助10
刚刚
慕青应助juan采纳,获得10
1秒前
1秒前
白小白发布了新的文献求助10
1秒前
丘比特应助阳光莲小蓬采纳,获得10
1秒前
司徒迎曼发布了新的文献求助10
1秒前
1秒前
2秒前
liuliu发布了新的文献求助10
2秒前
2秒前
523发布了新的文献求助10
2秒前
popcorn完成签到,获得积分10
3秒前
C2完成签到,获得积分10
3秒前
Agernon应助小小技术工采纳,获得10
4秒前
Rsoup发布了新的文献求助10
4秒前
九川发布了新的文献求助30
4秒前
漂亮的初蓝完成签到,获得积分10
4秒前
丰知然应助紫菜采纳,获得10
4秒前
科目三应助顺顺采纳,获得20
4秒前
桐桐应助自信富采纳,获得10
5秒前
健忘捕发布了新的文献求助10
5秒前
6秒前
叫滚滚发布了新的文献求助10
6秒前
请叫我风吹麦浪应助rain采纳,获得30
7秒前
123完成签到,获得积分10
7秒前
xx完成签到,获得积分10
7秒前
ZD完成签到 ,获得积分10
8秒前
科研通AI5应助Rui采纳,获得10
8秒前
yyj发布了新的文献求助10
8秒前
斯文静曼发布了新的文献求助10
8秒前
k7应助快乐滑板采纳,获得10
10秒前
假行僧发布了新的文献求助10
10秒前
10秒前
Wyoou完成签到,获得积分10
11秒前
11秒前
11秒前
故意的傲玉应助lll采纳,获得10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762