CBCT‐Based synthetic CT image generation using conditional denoising diffusion probabilistic model

霍恩斯菲尔德秤 人工智能 图像质量 影像引导放射治疗 计算机科学 锥束ct 降噪 医学影像学 图像配准 分割 磁共振弥散成像 核医学 计算机视觉 医学 图像(数学) 计算机断层摄影术 放射科 磁共振成像
作者
Junbo Peng,Richard L. J. Qiu,Jacob Wynne,Chih‐Wei Chang,Shaoyan Pan,Tonghe Wang,Justin Roper,Tian Liu,Pretesh Patel,David S. Yu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 1847-1859 被引量:37
标识
DOI:10.1002/mp.16704
摘要

Abstract Background Daily or weekly cone‐beam computed tomography (CBCT) scans are commonly used for accurate patient positioning during the image‐guided radiotherapy (IGRT) process, making it an ideal option for adaptive radiotherapy (ART) replanning. However, the presence of severe artifacts and inaccurate Hounsfield unit (HU) values prevent its use for quantitative applications such as organ segmentation and dose calculation. To enable the clinical practice of online ART, it is crucial to obtain CBCT scans with a quality comparable to that of a CT scan. Purpose This work aims to develop a conditional diffusion model to perform image translation from the CBCT to the CT distribution for the image quality improvement of CBCT. Methods The proposed method is a conditional denoising diffusion probabilistic model (DDPM) that utilizes a time‐embedded U‐net architecture with residual and attention blocks to gradually transform the white Gaussian noise sample to the target CT distribution conditioned on the CBCT. The model was trained on deformed planning CT (dpCT) and CBCT image pairs, and its feasibility was verified in brain patient study and head‐and‐neck (H&N) patient study. The performance of the proposed algorithm was evaluated using mean absolute error (MAE), peak signal‐to‐noise ratio (PSNR) and normalized cross‐correlation (NCC) metrics on generated synthetic CT (sCT) samples. The proposed method was also compared to four other diffusion model‐based sCT generation methods. Results In the brain patient study, the MAE, PSNR, and NCC of the generated sCT were 25.99 HU, 30.49 dB, and 0.99, respectively, compared to 40.63 HU, 27.87 dB, and 0.98 of the CBCT images. In the H&N patient study, the metrics were 32.56 HU, 27.65 dB, 0.98 and 38.99 HU, 27.00, 0.98 for sCT and CBCT, respectively. Compared to the other four diffusion models and one Cycle generative adversarial network (Cycle GAN), the proposed method showed superior results in both visual quality and quantitative analysis. Conclusions The proposed conditional DDPM method can generate sCT from CBCT with accurate HU numbers and reduced artifacts, enabling accurate CBCT‐based organ segmentation and dose calculation for online ART.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
陈昇完成签到 ,获得积分10
1秒前
Jasper应助niuuuuu采纳,获得10
2秒前
fineloby发布了新的文献求助10
3秒前
我是老大应助volvoamg采纳,获得30
4秒前
上官若男应助暴躁小兔采纳,获得10
4秒前
卷卷516发布了新的文献求助10
4秒前
fifteen发布了新的文献求助10
4秒前
5秒前
MARS完成签到 ,获得积分10
5秒前
7秒前
7秒前
wy发布了新的文献求助10
8秒前
8秒前
Jasper应助李啦啦采纳,获得10
9秒前
amongferns发布了新的文献求助10
10秒前
Orange应助从容的芷蕊采纳,获得10
10秒前
科研通AI2S应助mm采纳,获得10
11秒前
wx发布了新的文献求助10
11秒前
fanfanfan发布了新的文献求助10
13秒前
13秒前
迷路初兰发布了新的文献求助10
13秒前
13秒前
fineloby完成签到,获得积分10
14秒前
wy完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
niuuuuu发布了新的文献求助10
17秒前
汉堡包应助玉玉采纳,获得10
18秒前
aqslbydxyy发布了新的文献求助10
18秒前
Cheng完成签到,获得积分10
18秒前
wjzhan完成签到,获得积分10
21秒前
qiuqy发布了新的文献求助10
21秒前
CipherSage应助啦啦啦123采纳,获得10
21秒前
23秒前
23秒前
24秒前
桐桐应助诚心的碧空采纳,获得10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153667
求助须知:如何正确求助?哪些是违规求助? 2804835
关于积分的说明 7861986
捐赠科研通 2462948
什么是DOI,文献DOI怎么找? 1311018
科研通“疑难数据库(出版商)”最低求助积分说明 629429
版权声明 601821