Contextual Learning in Fourier Complex Field for VHR Remote Sensing Images

符号 像素 算法 计算机科学 人工智能 数学 算术
作者
Yan Zhang,Xiyuan Gao,Qingyan Duan,Jiaxu Leng,Xiao Pu,Xinbo Gao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:3
标识
DOI:10.1109/tnnls.2023.3319363
摘要

Very high-resolution (VHR) remote sensing (RS) image classification is the fundamental task for RS image analysis and understanding. Recently, Transformer-based models demonstrated outstanding potential for learning high-order contextual relationships from natural images with general resolution ( ≈ 224 × 224 pixels) and achieved remarkable results on general image classification tasks. However, the complexity of the naive Transformer grows quadratically with the increase in image size, which prevents Transformer-based models from VHR RS image ( ≥ 500 × 500 pixels) classification and other computationally expensive downstream tasks. To this end, we propose to decompose the expensive self-attention (SA) into real and imaginary parts via discrete Fourier transform (DFT) and, therefore, propose an efficient complex SA (CSA) mechanism. Benefiting from the conjugated symmetric property of DFT, CSA is capable to model the high-order contextual information with less than half computations of naive SA. To overcome the gradient explosion in Fourier complex field, we replace the Softmax function with the carefully designed Logmax function to normalize the attention map of CSA and stabilize the gradient propagation. By stacking various layers of CSA blocks, we propose the Fourier complex Transformer (FCT) model to learn global contextual information from VHR aerial images following the hierarchical manners. Universal experiments conducted on commonly used RS classification datasets demonstrate the effectiveness and efficiency of FCT, especially on VHR RS images. The source code of FCT will be available at https://github.com/Gao-xiyuan/FCT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助22222采纳,获得10
1秒前
小马哥完成签到,获得积分10
3秒前
3秒前
3秒前
壮观的擎发布了新的文献求助30
5秒前
Hmc完成签到 ,获得积分10
5秒前
dong应助xrl采纳,获得10
5秒前
6秒前
小猪佩奇完成签到,获得积分10
6秒前
6秒前
luogan完成签到,获得积分10
7秒前
兰天发布了新的文献求助30
7秒前
爆米花应助FFFFF采纳,获得10
7秒前
我是老大应助Wongradona采纳,获得10
8秒前
淡淡梦容发布了新的文献求助200
10秒前
帅气冥王星完成签到 ,获得积分10
10秒前
10秒前
小代发布了新的文献求助10
12秒前
EMM完成签到 ,获得积分10
12秒前
14秒前
深情安青应助壮观的擎采纳,获得10
15秒前
xf发布了新的文献求助10
16秒前
16秒前
16秒前
18秒前
19秒前
小巧谷波应助linxc07采纳,获得10
19秒前
20秒前
20秒前
taco发布了新的文献求助10
21秒前
21秒前
乐乐应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
22秒前
芙瑞发布了新的文献求助10
22秒前
充电宝应助科研通管家采纳,获得10
22秒前
23秒前
传奇3应助天真皓轩采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959633
求助须知:如何正确求助?哪些是违规求助? 3505879
关于积分的说明 11126688
捐赠科研通 3237840
什么是DOI,文献DOI怎么找? 1789380
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963