亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Contextual Learning in Fourier Complex Field for VHR Remote Sensing Images

符号 像素 算法 计算机科学 人工智能 数学 算术
作者
Yan Zhang,Xiyuan Gao,Qingyan Duan,Jiaxu Leng,Xiao Pu,Xinbo Gao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:3
标识
DOI:10.1109/tnnls.2023.3319363
摘要

Very high-resolution (VHR) remote sensing (RS) image classification is the fundamental task for RS image analysis and understanding. Recently, Transformer-based models demonstrated outstanding potential for learning high-order contextual relationships from natural images with general resolution ( ≈ 224 × 224 pixels) and achieved remarkable results on general image classification tasks. However, the complexity of the naive Transformer grows quadratically with the increase in image size, which prevents Transformer-based models from VHR RS image ( ≥ 500 × 500 pixels) classification and other computationally expensive downstream tasks. To this end, we propose to decompose the expensive self-attention (SA) into real and imaginary parts via discrete Fourier transform (DFT) and, therefore, propose an efficient complex SA (CSA) mechanism. Benefiting from the conjugated symmetric property of DFT, CSA is capable to model the high-order contextual information with less than half computations of naive SA. To overcome the gradient explosion in Fourier complex field, we replace the Softmax function with the carefully designed Logmax function to normalize the attention map of CSA and stabilize the gradient propagation. By stacking various layers of CSA blocks, we propose the Fourier complex Transformer (FCT) model to learn global contextual information from VHR aerial images following the hierarchical manners. Universal experiments conducted on commonly used RS classification datasets demonstrate the effectiveness and efficiency of FCT, especially on VHR RS images. The source code of FCT will be available at https://github.com/Gao-xiyuan/FCT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
整齐乐巧发布了新的文献求助10
8秒前
YUKI完成签到,获得积分10
10秒前
13秒前
ZaZa完成签到,获得积分10
21秒前
22秒前
33秒前
53秒前
老宇126发布了新的文献求助10
58秒前
科研剧中人完成签到,获得积分0
1分钟前
1分钟前
安静发布了新的文献求助10
1分钟前
1分钟前
1分钟前
无花果应助安静采纳,获得10
1分钟前
安静完成签到,获得积分10
1分钟前
1分钟前
FashionBoy应助酷酷一笑采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
WQ完成签到,获得积分10
3分钟前
HS完成签到,获得积分10
3分钟前
跳跃太清完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
酷酷一笑发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
文静灵阳完成签到 ,获得积分10
4分钟前
刻苦的尔白应助Hxy采纳,获得10
4分钟前
刻苦的尔白应助Hxy采纳,获得10
4分钟前
善学以致用应助Hxy采纳,获得10
4分钟前
丘比特应助Hxy采纳,获得10
4分钟前
希望天下0贩的0应助Hxy采纳,获得10
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3322676
求助须知:如何正确求助?哪些是违规求助? 2953927
关于积分的说明 8567146
捐赠科研通 2631437
什么是DOI,文献DOI怎么找? 1439892
科研通“疑难数据库(出版商)”最低求助积分说明 667269
邀请新用户注册赠送积分活动 653785