Investigation of manganese-iron oxide nanocomposite immobilized on powdered activated carbon as an efficient activator of peroxymonosulfate for antibiotics degradation: Conjunction of adsorption, radical and nonradical processes

化学 吸附 催化作用 降级(电信) 活性炭 粉末活性炭处理 化学工程 无机化学 纳米复合材料 羟基自由基 核化学 激进的 有机化学 电信 计算机科学 工程类
作者
Jiahui Zhou,Zonghua Wang
出处
期刊:Environmental Research [Elsevier]
卷期号:238: 117150-117150 被引量:6
标识
DOI:10.1016/j.envres.2023.117150
摘要

Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have gained considerable attention for their efficient oxidation of persistent pollutants. A two-step chemical co-precipitation method was used to prepare a bimetallic nanocomposite (MnOx@Fe3O4) consisting of manganese oxides and ferroferric oxides, supported by powdered activated carbon (PAC). The synthesis of MnOx@Fe3O4-PAC (MFP) was aimed to enhance the degradation efficiency of oxytetracycline (OTC) via the simultaneous adsorption and oxidation processes on the solid-liquid interface. The OTC degradation process in the MFP/PMS system could be well described by pseudo-first-order kinetics. A wide pH range (3-6) was acceptable for MFP to degrade OTC via PMS activation with the highest removal efficiency reaching up to 85.6% (OTC0 = 150 mg/L), while a 60.8% removal efficiency of total organic carbon (TOC) was also attained simultaneously. SO4•- and 1O2, which were bound to the surface, played a crucial role as reactive oxygen species in the degradation of OTC. The combination of PAC, Fe3O4, and MnOx of MFP could enhance the degradation efficiency of OTC and fetch up their defects of separate application. The deduced OTC degradation pathway relied on the findings from UPLC-MS analysis and density functional theory (DFT) calculations. Noteworthy, MFP maintained efficient catalysis performance in the five cycles of stability experiment with neglectable loss of manganese and iron. These results provide valuable understanding of the conjunction of adsorption, radical, and nonradical processes driven by MFP for OTC degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三里墩头应助王胖采纳,获得10
刚刚
Orange应助FG采纳,获得10
刚刚
刚刚
殷勤的斓发布了新的文献求助10
1秒前
善学以致用应助行走的车采纳,获得10
1秒前
zyl发布了新的文献求助10
2秒前
蛋黄派完成签到,获得积分10
2秒前
英姑应助666采纳,获得10
3秒前
天天快乐应助刘璇1采纳,获得10
3秒前
彭于晏应助Silole采纳,获得10
4秒前
飞鱼完成签到,获得积分10
5秒前
cgh635673发布了新的文献求助10
5秒前
一树一发布了新的文献求助30
5秒前
Orange应助阳光的盼旋采纳,获得10
6秒前
我是老大应助DDDD采纳,获得10
6秒前
7秒前
8秒前
8秒前
10秒前
wuchuanhai发布了新的文献求助10
11秒前
12秒前
领导范儿应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得20
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
勤劳绿柳应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得30
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得50
13秒前
华仔应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得30
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
小小怪发布了新的文献求助10
14秒前
14秒前
14秒前
lily发布了新的文献求助10
14秒前
羊可发布了新的文献求助10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563884
求助须知:如何正确求助?哪些是违规求助? 3137084
关于积分的说明 9421008
捐赠科研通 2837557
什么是DOI,文献DOI怎么找? 1559894
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717195