Sensor Fusion-Based Anthropomorphic Control of a Robotic Arm

惯性测量装置 有线手套 传感器融合 可穿戴计算机 计算机科学 人工智能 灵活性(工程) 计算机视觉 机械臂 模拟 工程类 虚拟现实 嵌入式系统 统计 数学
作者
Fu‐Rong Chen,Feilong Wang,Yanling Dong,Yong Qi,Xiaolong Yang,Long Zheng,Yi Gao,Hang Su
出处
期刊:Bioengineering [Multidisciplinary Digital Publishing Institute]
卷期号:10 (11): 1243-1243 被引量:4
标识
DOI:10.3390/bioengineering10111243
摘要

The main goal of this research is to develop a highly advanced anthropomorphic control system utilizing multiple sensor technologies to achieve precise control of a robotic arm. Combining Kinect and IMU sensors, together with a data glove, we aim to create a multimodal sensor system for capturing rich information of human upper body movements. Specifically, the four angles of upper limb joints are collected using the Kinect sensor and IMU sensor. In order to improve the accuracy and stability of motion tracking, we use the Kalman filter method to fuse the Kinect and IMU data. In addition, we introduce data glove technology to collect the angle information of the wrist and fingers in seven different directions. The integration and fusion of multiple sensors provides us with full control over the robotic arm, giving it flexibility with 11 degrees of freedom. We successfully achieved a variety of anthropomorphic movements, including shoulder flexion, abduction, rotation, elbow flexion, and fine movements of the wrist and fingers. Most importantly, our experimental results demonstrate that the anthropomorphic control system we developed is highly accurate, real-time, and operable. In summary, the contribution of this study lies in the creation of a multimodal sensor system capable of capturing and precisely controlling human upper limb movements, which provides a solid foundation for the future development of anthropomorphic control technologies. This technology has a wide range of application prospects and can be used for rehabilitation in the medical field, robot collaboration in industrial automation, and immersive experience in virtual reality environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiang发布了新的文献求助10
刚刚
思源应助愉快的真采纳,获得50
刚刚
科研通AI5应助zxj采纳,获得10
刚刚
Akim应助甜美的尔容采纳,获得10
1秒前
paleo-地质发布了新的文献求助10
1秒前
whichwhy完成签到,获得积分10
1秒前
kkk完成签到,获得积分10
2秒前
庾天磊完成签到 ,获得积分10
2秒前
小马甲应助wenqin采纳,获得10
2秒前
发嗲的亦绿完成签到,获得积分20
3秒前
3秒前
4秒前
科研爱好者完成签到,获得积分10
4秒前
京言完成签到,获得积分10
5秒前
Anthony_潇完成签到,获得积分10
5秒前
iu完成签到,获得积分10
5秒前
智慧大狗发布了新的文献求助10
6秒前
青芒果完成签到,获得积分10
7秒前
华仔应助要减肥的魔镜采纳,获得10
7秒前
嗒嗒完成签到,获得积分10
7秒前
ww关注了科研通微信公众号
7秒前
OI完成签到,获得积分10
8秒前
赘婿应助LLL采纳,获得10
8秒前
无敌剑士123完成签到,获得积分10
8秒前
呼了个呼完成签到,获得积分10
10秒前
123发布了新的文献求助30
10秒前
HIT_C完成签到 ,获得积分10
10秒前
TangWL完成签到 ,获得积分10
10秒前
tommyliu完成签到,获得积分10
10秒前
11秒前
小小自由应助快乐藏花采纳,获得10
11秒前
AYiii完成签到,获得积分10
11秒前
lixiniverson完成签到 ,获得积分10
12秒前
SciGPT应助鸭梨很大采纳,获得10
14秒前
任世界灯火阑珊完成签到,获得积分10
14秒前
怡然的乘风完成签到 ,获得积分10
14秒前
NexusExplorer应助试验顺利采纳,获得10
14秒前
14秒前
14秒前
怡然尔容关注了科研通微信公众号
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 200
A Comprehensive and Practical Guide to Clinical Trials 200
clinical examination books 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695594
求助须知:如何正确求助?哪些是违规求助? 3247056
关于积分的说明 9853612
捐赠科研通 2958725
什么是DOI,文献DOI怎么找? 1622253
邀请新用户注册赠送积分活动 767867
科研通“疑难数据库(出版商)”最低求助积分说明 741293