Potential of ChatGPT and GPT-4 for Data Mining of Free-Text CT Reports on Lung Cancer

医学 麦克内马尔试验 肺癌 癌症 内科学 人工智能 统计 计算机科学 数学
作者
Matthias A. Fink,Arved Bischoff,Christoph A. Fink,M. Moll,Jonas Kroschke,Luca Dulz,C. P. Heußel,Hans‐Ulrich Kauczor,Tim Frederik Weber
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (3) 被引量:93
标识
DOI:10.1148/radiol.231362
摘要

Background The latest large language models (LLMs) solve unseen problems via user-defined text prompts without the need for retraining, offering potentially more efficient information extraction from free-text medical records than manual annotation. Purpose To compare the performance of the LLMs ChatGPT and GPT-4 in data mining and labeling oncologic phenotypes from free-text CT reports on lung cancer by using user-defined prompts. Materials and Methods This retrospective study included patients who underwent lung cancer follow-up CT between September 2021 and March 2023. A subset of 25 reports was reserved for prompt engineering to instruct the LLMs in extracting lesion diameters, labeling metastatic disease, and assessing oncologic progression. This output was fed into a rule-based natural language processing pipeline to match ground truth annotations from four radiologists and derive performance metrics. The oncologic reasoning of LLMs was rated on a five-point Likert scale for factual correctness and accuracy. The occurrence of confabulations was recorded. Statistical analyses included Wilcoxon signed rank and McNemar tests. Results On 424 CT reports from 424 patients (mean age, 65 years ± 11 [SD]; 265 male), GPT-4 outperformed ChatGPT in extracting lesion parameters (98.6% vs 84.0%, P < .001), resulting in 96% correctly mined reports (vs 67% for ChatGPT, P < .001). GPT-4 achieved higher accuracy in identification of metastatic disease (98.1% [95% CI: 97.7, 98.5] vs 90.3% [95% CI: 89.4, 91.0]) and higher performance in generating correct labels for oncologic progression (F1 score, 0.96 [95% CI: 0.94, 0.98] vs 0.91 [95% CI: 0.89, 0.94]) (both P < .001). In oncologic reasoning, GPT-4 had higher Likert scale scores for factual correctness (4.3 vs 3.9) and accuracy (4.4 vs 3.3), with a lower rate of confabulation (1.7% vs 13.7%) than ChatGPT (all P < .001). Conclusion When using user-defined prompts, GPT-4 outperformed ChatGPT in extracting oncologic phenotypes from free-text CT reports on lung cancer and demonstrated better oncologic reasoning with fewer confabulations. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Hafezi-Nejad and Trivedi in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你笑一下嘛zz完成签到,获得积分10
2秒前
小呆呆呆完成签到,获得积分10
2秒前
5秒前
王欣发布了新的文献求助10
10秒前
Sevendesu应助洪嘻嘻采纳,获得10
11秒前
12秒前
不吃橘子完成签到,获得积分10
12秒前
12秒前
15秒前
shimly0101xx发布了新的文献求助10
16秒前
18秒前
21秒前
宋治发布了新的文献求助10
21秒前
马树成完成签到,获得积分10
24秒前
科研小白发布了新的文献求助10
26秒前
26秒前
27秒前
领导范儿应助科研通管家采纳,获得10
29秒前
星辰大海应助科研通管家采纳,获得20
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
29秒前
Singularity应助科研通管家采纳,获得10
29秒前
32秒前
CipherSage应助安安安采纳,获得10
32秒前
smile完成签到 ,获得积分10
35秒前
Hqc完成签到,获得积分10
36秒前
小蘑菇应助梅川秋裤采纳,获得10
38秒前
38秒前
Tian发布了新的文献求助10
39秒前
许鑫蓁发布了新的文献求助10
40秒前
lw关注了科研通微信公众号
42秒前
NWP关闭了NWP文献求助
42秒前
43秒前
46秒前
坚持每天读10h书完成签到 ,获得积分20
48秒前
49秒前
54秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264457
求助须知:如何正确求助?哪些是违规求助? 2904489
关于积分的说明 8330607
捐赠科研通 2574773
什么是DOI,文献DOI怎么找? 1399398
科研通“疑难数据库(出版商)”最低求助积分说明 654484
邀请新用户注册赠送积分活动 633194