Potential of ChatGPT and GPT-4 for Data Mining of Free-Text CT Reports on Lung Cancer

医学 麦克内马尔试验 肺癌 癌症 内科学 人工智能 统计 计算机科学 数学
作者
Matthias A. Fink,Arved Bischoff,Christoph A. Fink,M. Moll,Jonas Kroschke,Luca Dulz,C. P. Heußel,Hans‐Ulrich Kauczor,Tim Frederik Weber
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (3) 被引量:120
标识
DOI:10.1148/radiol.231362
摘要

Background The latest large language models (LLMs) solve unseen problems via user-defined text prompts without the need for retraining, offering potentially more efficient information extraction from free-text medical records than manual annotation. Purpose To compare the performance of the LLMs ChatGPT and GPT-4 in data mining and labeling oncologic phenotypes from free-text CT reports on lung cancer by using user-defined prompts. Materials and Methods This retrospective study included patients who underwent lung cancer follow-up CT between September 2021 and March 2023. A subset of 25 reports was reserved for prompt engineering to instruct the LLMs in extracting lesion diameters, labeling metastatic disease, and assessing oncologic progression. This output was fed into a rule-based natural language processing pipeline to match ground truth annotations from four radiologists and derive performance metrics. The oncologic reasoning of LLMs was rated on a five-point Likert scale for factual correctness and accuracy. The occurrence of confabulations was recorded. Statistical analyses included Wilcoxon signed rank and McNemar tests. Results On 424 CT reports from 424 patients (mean age, 65 years ± 11 [SD]; 265 male), GPT-4 outperformed ChatGPT in extracting lesion parameters (98.6% vs 84.0%, P < .001), resulting in 96% correctly mined reports (vs 67% for ChatGPT, P < .001). GPT-4 achieved higher accuracy in identification of metastatic disease (98.1% [95% CI: 97.7, 98.5] vs 90.3% [95% CI: 89.4, 91.0]) and higher performance in generating correct labels for oncologic progression (F1 score, 0.96 [95% CI: 0.94, 0.98] vs 0.91 [95% CI: 0.89, 0.94]) (both P < .001). In oncologic reasoning, GPT-4 had higher Likert scale scores for factual correctness (4.3 vs 3.9) and accuracy (4.4 vs 3.3), with a lower rate of confabulation (1.7% vs 13.7%) than ChatGPT (all P < .001). Conclusion When using user-defined prompts, GPT-4 outperformed ChatGPT in extracting oncologic phenotypes from free-text CT reports on lung cancer and demonstrated better oncologic reasoning with fewer confabulations. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Hafezi-Nejad and Trivedi in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医学生发布了新的文献求助10
1秒前
2秒前
2秒前
Jiangzhibing发布了新的文献求助10
3秒前
3秒前
jdh发布了新的文献求助30
4秒前
4秒前
4秒前
豪_seven发布了新的文献求助10
4秒前
4秒前
grmqgq完成签到,获得积分10
5秒前
5秒前
楠木发布了新的文献求助10
5秒前
小蘑菇应助keigo采纳,获得10
5秒前
妍yan发布了新的文献求助10
5秒前
6秒前
俭朴的奇异果完成签到,获得积分10
6秒前
6秒前
沉静篮球发布了新的文献求助10
7秒前
missme完成签到,获得积分10
7秒前
悦悦完成签到,获得积分20
7秒前
酷波er应助Cody采纳,获得10
7秒前
zyj发布了新的文献求助200
7秒前
金枪鱼子完成签到,获得积分10
8秒前
十三发布了新的文献求助30
8秒前
8秒前
YKH发布了新的文献求助10
8秒前
8秒前
研友_滕谷完成签到,获得积分10
8秒前
医学生完成签到,获得积分10
9秒前
由道罡发布了新的文献求助10
9秒前
9秒前
ganni发布了新的文献求助10
9秒前
徐小发布了新的文献求助10
9秒前
9秒前
养虎人完成签到,获得积分20
9秒前
夜夜发布了新的文献求助10
9秒前
zzw完成签到,获得积分10
10秒前
可爱的函函应助哈哈哈采纳,获得10
10秒前
路易斯发布了新的文献求助10
10秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239649
求助须知:如何正确求助?哪些是违规求助? 4406942
关于积分的说明 13716567
捐赠科研通 4275445
什么是DOI,文献DOI怎么找? 2346001
邀请新用户注册赠送积分活动 1343148
关于科研通互助平台的介绍 1301201