Potential of ChatGPT and GPT-4 for Data Mining of Free-Text CT Reports on Lung Cancer

医学 麦克内马尔试验 肺癌 癌症 内科学 人工智能 统计 计算机科学 数学
作者
Matthias A. Fink,Arved Bischoff,Christoph A. Fink,M. Moll,Jonas Kroschke,Luca Dulz,C. P. Heußel,Hans‐Ulrich Kauczor,Tim Frederik Weber
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (3) 被引量:120
标识
DOI:10.1148/radiol.231362
摘要

Background The latest large language models (LLMs) solve unseen problems via user-defined text prompts without the need for retraining, offering potentially more efficient information extraction from free-text medical records than manual annotation. Purpose To compare the performance of the LLMs ChatGPT and GPT-4 in data mining and labeling oncologic phenotypes from free-text CT reports on lung cancer by using user-defined prompts. Materials and Methods This retrospective study included patients who underwent lung cancer follow-up CT between September 2021 and March 2023. A subset of 25 reports was reserved for prompt engineering to instruct the LLMs in extracting lesion diameters, labeling metastatic disease, and assessing oncologic progression. This output was fed into a rule-based natural language processing pipeline to match ground truth annotations from four radiologists and derive performance metrics. The oncologic reasoning of LLMs was rated on a five-point Likert scale for factual correctness and accuracy. The occurrence of confabulations was recorded. Statistical analyses included Wilcoxon signed rank and McNemar tests. Results On 424 CT reports from 424 patients (mean age, 65 years ± 11 [SD]; 265 male), GPT-4 outperformed ChatGPT in extracting lesion parameters (98.6% vs 84.0%, P < .001), resulting in 96% correctly mined reports (vs 67% for ChatGPT, P < .001). GPT-4 achieved higher accuracy in identification of metastatic disease (98.1% [95% CI: 97.7, 98.5] vs 90.3% [95% CI: 89.4, 91.0]) and higher performance in generating correct labels for oncologic progression (F1 score, 0.96 [95% CI: 0.94, 0.98] vs 0.91 [95% CI: 0.89, 0.94]) (both P < .001). In oncologic reasoning, GPT-4 had higher Likert scale scores for factual correctness (4.3 vs 3.9) and accuracy (4.4 vs 3.3), with a lower rate of confabulation (1.7% vs 13.7%) than ChatGPT (all P < .001). Conclusion When using user-defined prompts, GPT-4 outperformed ChatGPT in extracting oncologic phenotypes from free-text CT reports on lung cancer and demonstrated better oncologic reasoning with fewer confabulations. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Hafezi-Nejad and Trivedi in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
粗犷的沛容完成签到,获得积分0
1秒前
秦奥洋完成签到,获得积分10
1秒前
优美飞薇完成签到,获得积分10
1秒前
研友_Z3NGvn发布了新的文献求助10
2秒前
连衣裙发布了新的文献求助10
3秒前
Philthee完成签到,获得积分10
3秒前
4秒前
ybheart完成签到,获得积分0
4秒前
玖爱发布了新的文献求助10
4秒前
xiu-er发布了新的文献求助10
6秒前
7秒前
小二郎应助虚幻的断天采纳,获得10
7秒前
善学以致用应助TZ采纳,获得10
7秒前
8秒前
9秒前
9秒前
肥鱼发布了新的文献求助10
10秒前
11秒前
11秒前
Bismarck发布了新的文献求助10
13秒前
普馨娴关注了科研通微信公众号
14秒前
14秒前
Julie发布了新的文献求助10
15秒前
小小发布了新的文献求助10
15秒前
16秒前
17秒前
shauiluo完成签到,获得积分10
18秒前
18秒前
无花果应助hdcf采纳,获得10
19秒前
共享精神应助玉玉采纳,获得10
20秒前
浮游应助goo采纳,获得10
20秒前
TZ发布了新的文献求助10
21秒前
李子衡发布了新的文献求助10
21秒前
丘比特应助小卡拉米采纳,获得10
21秒前
22秒前
思源应助大枣儿采纳,获得10
22秒前
24秒前
美丽老三完成签到,获得积分20
25秒前
开心元霜完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320711
求助须知:如何正确求助?哪些是违规求助? 4462526
关于积分的说明 13887138
捐赠科研通 4353537
什么是DOI,文献DOI怎么找? 2391240
邀请新用户注册赠送积分活动 1384892
关于科研通互助平台的介绍 1354655