已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Potential of ChatGPT and GPT-4 for Data Mining of Free-Text CT Reports on Lung Cancer

医学 麦克内马尔试验 肺癌 癌症 内科学 人工智能 统计 计算机科学 数学
作者
Matthias A. Fink,Arved Bischoff,Christoph A. Fink,M. Moll,Jonas Kroschke,Luca Dulz,C. P. Heußel,Hans‐Ulrich Kauczor,Tim Frederik Weber
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (3) 被引量:120
标识
DOI:10.1148/radiol.231362
摘要

Background The latest large language models (LLMs) solve unseen problems via user-defined text prompts without the need for retraining, offering potentially more efficient information extraction from free-text medical records than manual annotation. Purpose To compare the performance of the LLMs ChatGPT and GPT-4 in data mining and labeling oncologic phenotypes from free-text CT reports on lung cancer by using user-defined prompts. Materials and Methods This retrospective study included patients who underwent lung cancer follow-up CT between September 2021 and March 2023. A subset of 25 reports was reserved for prompt engineering to instruct the LLMs in extracting lesion diameters, labeling metastatic disease, and assessing oncologic progression. This output was fed into a rule-based natural language processing pipeline to match ground truth annotations from four radiologists and derive performance metrics. The oncologic reasoning of LLMs was rated on a five-point Likert scale for factual correctness and accuracy. The occurrence of confabulations was recorded. Statistical analyses included Wilcoxon signed rank and McNemar tests. Results On 424 CT reports from 424 patients (mean age, 65 years ± 11 [SD]; 265 male), GPT-4 outperformed ChatGPT in extracting lesion parameters (98.6% vs 84.0%, P < .001), resulting in 96% correctly mined reports (vs 67% for ChatGPT, P < .001). GPT-4 achieved higher accuracy in identification of metastatic disease (98.1% [95% CI: 97.7, 98.5] vs 90.3% [95% CI: 89.4, 91.0]) and higher performance in generating correct labels for oncologic progression (F1 score, 0.96 [95% CI: 0.94, 0.98] vs 0.91 [95% CI: 0.89, 0.94]) (both P < .001). In oncologic reasoning, GPT-4 had higher Likert scale scores for factual correctness (4.3 vs 3.9) and accuracy (4.4 vs 3.3), with a lower rate of confabulation (1.7% vs 13.7%) than ChatGPT (all P < .001). Conclusion When using user-defined prompts, GPT-4 outperformed ChatGPT in extracting oncologic phenotypes from free-text CT reports on lung cancer and demonstrated better oncologic reasoning with fewer confabulations. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Hafezi-Nejad and Trivedi in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nk完成签到 ,获得积分10
3秒前
123456789完成签到,获得积分10
3秒前
dd发布了新的文献求助10
3秒前
dracovu完成签到,获得积分10
4秒前
Yy完成签到 ,获得积分10
5秒前
5秒前
克劳修斯完成签到 ,获得积分10
5秒前
Auralis完成签到 ,获得积分10
6秒前
13686682012发布了新的文献求助10
6秒前
土豪的新儿完成签到 ,获得积分10
6秒前
dax大雄完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
发发发布了新的文献求助10
11秒前
晨晨完成签到 ,获得积分10
12秒前
杰哥完成签到 ,获得积分10
12秒前
糊涂的皮皮虾完成签到 ,获得积分10
14秒前
hhan发布了新的文献求助20
15秒前
碧蓝的夏天完成签到,获得积分10
15秒前
15秒前
刻苦藏今发布了新的文献求助30
16秒前
LArry发布了新的文献求助10
17秒前
十八完成签到 ,获得积分10
17秒前
LELE完成签到 ,获得积分10
21秒前
22秒前
23秒前
细腻鸭子发布了新的文献求助10
24秒前
雪酪芋泥球完成签到 ,获得积分10
24秒前
24秒前
明澜完成签到 ,获得积分20
25秒前
wisher完成签到 ,获得积分10
25秒前
26秒前
发呆发布了新的文献求助30
27秒前
CodeCraft应助啊啊啊啊啊苏采纳,获得10
27秒前
情怀应助111111采纳,获得10
28秒前
帅帅发布了新的文献求助10
29秒前
幸符完成签到 ,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610218
求助须知:如何正确求助?哪些是违规求助? 4016237
关于积分的说明 12434819
捐赠科研通 3697797
什么是DOI,文献DOI怎么找? 2038994
邀请新用户注册赠送积分活动 1071906
科研通“疑难数据库(出版商)”最低求助积分说明 955582