清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-Agent Constrained Policy Optimization for Conflict-Free Management of Connected Autonomous Vehicles at Unsignalized Intersections

强化学习 交叉口(航空) 计算机科学 数学优化 约束(计算机辅助设计) 动态规划 马尔可夫决策过程 马尔可夫过程 运筹学 工程类 人工智能 运输工程 数学 算法 机械工程 统计
作者
Rui Zhao,Yun Li,Fei Gao,Zhenhai Gao,Tianyao Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 5374-5388 被引量:3
标识
DOI:10.1109/tits.2023.3331723
摘要

Autonomous Intersection Management (AIM) systems present a new paradigm for conflict-free cooperation of connected autonomous vehicles (CAVs) at road intersections, the aim of which is to eliminate collisions and improve the traffic efficiency and ride comfort. Given the challenges of current centralized coordination methods in balancing high computational efficiency and robust safety assurance, this paper proposes an innovative conflict-free management scheme for CAVs at unsignalized intersections, leveraging safe multi-agent deep reinforcement learning (MADRL). Firstly, we formulate the safe MADRL problem as a constrained Markov game (CMG) and then transform the AIM problem into a CMG by carefully designing state, action, reward, and cost functions. Subsequently, we propose the Multi-Agent Constrained Policy Optimization (MACPO), specifically tailored to solve the CMG problem. MACPO incorporates safety constraints that further restrict the trust region formed by the Kullback-Leibler (KL) divergence, facilitating reinforcement learning policy updates that maximize performance while keeping constraint costs within their limit bounds. This leads us to introduce the MACPO-based AIM Algorithm. Finally, we train an AIM policy and compare its computation time, ride comfort, traffic efficiency, and safety with management schemes based on Model Predictive Control (MPC), Mixed Integer Programming (MIP), and non-safety-aware reinforcement learning. According to the results, compared with the MPC and MIP methods, our method has increased computational efficiency by 65.22 times and 731.52 times respectively, and has improved traffic efficiency by 2.41 times and 1.80 times respectively. In contrast to the non-safety awareness RL methods, our method achieves a zero collision rate for the first time, while also enhancing ride comfort, highlighting the advantages of using MACPO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
7秒前
科研狗的春天完成签到 ,获得积分10
10秒前
11秒前
12秒前
13秒前
輕瘋发布了新的文献求助10
16秒前
輕瘋完成签到,获得积分10
27秒前
28秒前
44秒前
48秒前
48秒前
59秒前
1分钟前
1分钟前
1分钟前
葛力完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ZTiamT发布了新的文献求助200
1分钟前
1分钟前
2分钟前
2分钟前
ZTiamT发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
FashionBoy应助忧郁菲鹰采纳,获得30
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732432
求助须知:如何正确求助?哪些是违规求助? 5339270
关于积分的说明 15322228
捐赠科研通 4878002
什么是DOI,文献DOI怎么找? 2620807
邀请新用户注册赠送积分活动 1570003
关于科研通互助平台的介绍 1526689