Multi-Agent Constrained Policy Optimization for Conflict-Free Management of Connected Autonomous Vehicles at Unsignalized Intersections

强化学习 交叉口(航空) 计算机科学 数学优化 约束(计算机辅助设计) 动态规划 马尔可夫决策过程 马尔可夫过程 运筹学 工程类 人工智能 运输工程 数学 算法 机械工程 统计
作者
Rui Zhao,Yun Li,Fei Gao,Zhenhai Gao,Tianyao Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 5374-5388 被引量:3
标识
DOI:10.1109/tits.2023.3331723
摘要

Autonomous Intersection Management (AIM) systems present a new paradigm for conflict-free cooperation of connected autonomous vehicles (CAVs) at road intersections, the aim of which is to eliminate collisions and improve the traffic efficiency and ride comfort. Given the challenges of current centralized coordination methods in balancing high computational efficiency and robust safety assurance, this paper proposes an innovative conflict-free management scheme for CAVs at unsignalized intersections, leveraging safe multi-agent deep reinforcement learning (MADRL). Firstly, we formulate the safe MADRL problem as a constrained Markov game (CMG) and then transform the AIM problem into a CMG by carefully designing state, action, reward, and cost functions. Subsequently, we propose the Multi-Agent Constrained Policy Optimization (MACPO), specifically tailored to solve the CMG problem. MACPO incorporates safety constraints that further restrict the trust region formed by the Kullback-Leibler (KL) divergence, facilitating reinforcement learning policy updates that maximize performance while keeping constraint costs within their limit bounds. This leads us to introduce the MACPO-based AIM Algorithm. Finally, we train an AIM policy and compare its computation time, ride comfort, traffic efficiency, and safety with management schemes based on Model Predictive Control (MPC), Mixed Integer Programming (MIP), and non-safety-aware reinforcement learning. According to the results, compared with the MPC and MIP methods, our method has increased computational efficiency by 65.22 times and 731.52 times respectively, and has improved traffic efficiency by 2.41 times and 1.80 times respectively. In contrast to the non-safety awareness RL methods, our method achieves a zero collision rate for the first time, while also enhancing ride comfort, highlighting the advantages of using MACPO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏silence发布了新的文献求助10
刚刚
muzi完成签到,获得积分10
刚刚
阿巴阿哲关注了科研通微信公众号
1秒前
1秒前
嘻嘻哈哈完成签到,获得积分10
1秒前
LM完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助100
1秒前
zlsuen发布了新的文献求助10
2秒前
LI完成签到,获得积分10
2秒前
my123完成签到,获得积分10
2秒前
科研丁完成签到,获得积分10
3秒前
林夏发布了新的文献求助10
3秒前
3秒前
大海123完成签到,获得积分10
4秒前
4秒前
4秒前
冷酷严青发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
ZIS完成签到,获得积分10
6秒前
单薄谷秋完成签到,获得积分10
6秒前
超帅问枫完成签到,获得积分10
6秒前
6秒前
Hindiii完成签到,获得积分10
6秒前
Mr_Lv发布了新的文献求助10
6秒前
7秒前
ryen发布了新的文献求助10
7秒前
ty完成签到,获得积分10
7秒前
打打应助qweasdzxcqwe采纳,获得10
7秒前
科研通AI5应助qweasdzxcqwe采纳,获得10
7秒前
wanci应助qweasdzxcqwe采纳,获得10
7秒前
kingripple完成签到,获得积分10
7秒前
加薪完成签到,获得积分10
7秒前
li关注了科研通微信公众号
8秒前
谨慎半鬼完成签到 ,获得积分10
8秒前
望处雨收云断完成签到 ,获得积分10
9秒前
金枪鱼子完成签到,获得积分10
9秒前
xf完成签到,获得积分10
9秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582