Multi-Agent Constrained Policy Optimization for Conflict-Free Management of Connected Autonomous Vehicles at Unsignalized Intersections

强化学习 交叉口(航空) 计算机科学 数学优化 约束(计算机辅助设计) 动态规划 马尔可夫决策过程 马尔可夫过程 运筹学 工程类 人工智能 运输工程 数学 算法 机械工程 统计
作者
Rui Zhao,Yun Li,Fei Gao,Zhenhai Gao,Tianyao Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 5374-5388 被引量:3
标识
DOI:10.1109/tits.2023.3331723
摘要

Autonomous Intersection Management (AIM) systems present a new paradigm for conflict-free cooperation of connected autonomous vehicles (CAVs) at road intersections, the aim of which is to eliminate collisions and improve the traffic efficiency and ride comfort. Given the challenges of current centralized coordination methods in balancing high computational efficiency and robust safety assurance, this paper proposes an innovative conflict-free management scheme for CAVs at unsignalized intersections, leveraging safe multi-agent deep reinforcement learning (MADRL). Firstly, we formulate the safe MADRL problem as a constrained Markov game (CMG) and then transform the AIM problem into a CMG by carefully designing state, action, reward, and cost functions. Subsequently, we propose the Multi-Agent Constrained Policy Optimization (MACPO), specifically tailored to solve the CMG problem. MACPO incorporates safety constraints that further restrict the trust region formed by the Kullback-Leibler (KL) divergence, facilitating reinforcement learning policy updates that maximize performance while keeping constraint costs within their limit bounds. This leads us to introduce the MACPO-based AIM Algorithm. Finally, we train an AIM policy and compare its computation time, ride comfort, traffic efficiency, and safety with management schemes based on Model Predictive Control (MPC), Mixed Integer Programming (MIP), and non-safety-aware reinforcement learning. According to the results, compared with the MPC and MIP methods, our method has increased computational efficiency by 65.22 times and 731.52 times respectively, and has improved traffic efficiency by 2.41 times and 1.80 times respectively. In contrast to the non-safety awareness RL methods, our method achieves a zero collision rate for the first time, while also enhancing ride comfort, highlighting the advantages of using MACPO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Shirley完成签到 ,获得积分10
1秒前
1秒前
郭郭完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
端庄代荷完成签到 ,获得积分10
6秒前
6秒前
acc发布了新的文献求助10
7秒前
慕青应助小台采纳,获得10
8秒前
9秒前
好巧完成签到,获得积分10
9秒前
Zzz发布了新的文献求助10
9秒前
10秒前
Lucas应助葛博采纳,获得10
11秒前
LPhy_Z发布了新的文献求助10
12秒前
liujinhui发布了新的文献求助30
12秒前
bkagyin应助刘美双采纳,获得10
13秒前
隐形曼青应助姚洋采纳,获得10
13秒前
miao发布了新的文献求助10
15秒前
憨憨医生发布了新的文献求助10
15秒前
18秒前
18秒前
20秒前
21秒前
合适梦槐应助白落落采纳,获得10
21秒前
无情招牌完成签到,获得积分10
22秒前
22秒前
清风完成签到 ,获得积分10
22秒前
23秒前
23秒前
24秒前
葛博发布了新的文献求助10
24秒前
24秒前
24秒前
无情招牌发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712069
求助须知:如何正确求助?哪些是违规求助? 3260287
关于积分的说明 9913349
捐赠科研通 2973619
什么是DOI,文献DOI怎么找? 1630714
邀请新用户注册赠送积分活动 773553
科研通“疑难数据库(出版商)”最低求助积分说明 744295