Multi-Agent Constrained Policy Optimization for Conflict-Free Management of Connected Autonomous Vehicles at Unsignalized Intersections

强化学习 交叉口(航空) 计算机科学 数学优化 约束(计算机辅助设计) 动态规划 马尔可夫决策过程 马尔可夫过程 运筹学 工程类 人工智能 运输工程 数学 算法 机械工程 统计
作者
Rui Zhao,Yun Li,Fei Gao,Zhenhai Gao,Tianyao Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 5374-5388 被引量:3
标识
DOI:10.1109/tits.2023.3331723
摘要

Autonomous Intersection Management (AIM) systems present a new paradigm for conflict-free cooperation of connected autonomous vehicles (CAVs) at road intersections, the aim of which is to eliminate collisions and improve the traffic efficiency and ride comfort. Given the challenges of current centralized coordination methods in balancing high computational efficiency and robust safety assurance, this paper proposes an innovative conflict-free management scheme for CAVs at unsignalized intersections, leveraging safe multi-agent deep reinforcement learning (MADRL). Firstly, we formulate the safe MADRL problem as a constrained Markov game (CMG) and then transform the AIM problem into a CMG by carefully designing state, action, reward, and cost functions. Subsequently, we propose the Multi-Agent Constrained Policy Optimization (MACPO), specifically tailored to solve the CMG problem. MACPO incorporates safety constraints that further restrict the trust region formed by the Kullback-Leibler (KL) divergence, facilitating reinforcement learning policy updates that maximize performance while keeping constraint costs within their limit bounds. This leads us to introduce the MACPO-based AIM Algorithm. Finally, we train an AIM policy and compare its computation time, ride comfort, traffic efficiency, and safety with management schemes based on Model Predictive Control (MPC), Mixed Integer Programming (MIP), and non-safety-aware reinforcement learning. According to the results, compared with the MPC and MIP methods, our method has increased computational efficiency by 65.22 times and 731.52 times respectively, and has improved traffic efficiency by 2.41 times and 1.80 times respectively. In contrast to the non-safety awareness RL methods, our method achieves a zero collision rate for the first time, while also enhancing ride comfort, highlighting the advantages of using MACPO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
buno应助是真的采纳,获得10
1秒前
亓泽融发布了新的文献求助10
1秒前
DGFR完成签到,获得积分10
4秒前
纯甄完成签到,获得积分10
4秒前
桐桐应助路弥采纳,获得10
5秒前
Trailblazer完成签到,获得积分10
6秒前
6秒前
7秒前
暖枫完成签到,获得积分10
8秒前
英姑应助梅花采纳,获得10
13秒前
可可西里完成签到 ,获得积分10
13秒前
ZHQ发布了新的文献求助10
15秒前
瞿敏敏发布了新的文献求助10
15秒前
呦吼。。。完成签到,获得积分10
15秒前
自由溪灵完成签到,获得积分10
15秒前
芋泥啵啵完成签到 ,获得积分10
15秒前
曾经完成签到 ,获得积分10
16秒前
wanci应助科研通管家采纳,获得10
17秒前
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得20
17秒前
李健的粉丝团团长应助123采纳,获得10
17秒前
17秒前
SciGPT应助笑点低的天问采纳,获得10
18秒前
XIAOJU_U完成签到 ,获得积分10
20秒前
树林红了完成签到,获得积分10
20秒前
21秒前
25秒前
25秒前
粗犷的书萱应助ZXT采纳,获得10
26秒前
赫凡发布了新的文献求助50
27秒前
充电宝应助栖木采纳,获得10
27秒前
赵博完成签到 ,获得积分10
28秒前
28秒前
狂野的奎完成签到,获得积分10
30秒前
zjspidany完成签到,获得积分10
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262406
求助须知:如何正确求助?哪些是违规求助? 2903122
关于积分的说明 8324156
捐赠科研通 2573172
什么是DOI,文献DOI怎么找? 1398083
科研通“疑难数据库(出版商)”最低求助积分说明 654018
邀请新用户注册赠送积分活动 632623