神秘的
医学
队列
前瞻性队列研究
肺癌
阶段(地层学)
转移
接收机工作特性
放射科
癌症
人工智能
内科学
肿瘤科
病理
计算机科学
古生物学
替代医学
生物
作者
Yifan Zhong,Chuang Cai,Tao Chen,Hao Gui,Jiajun Deng,Minglei Yang,Bentong Yu,Yongxiang Song,Tingting Wang,Xiwen Sun,Jingyun Shi,Yangchun Chen,Xie Dong,Chang Chen,Yunlang She
标识
DOI:10.1038/s41467-023-42811-4
摘要
Occult nodal metastasis (ONM) plays a significant role in comprehensive treatments of non-small cell lung cancer (NSCLC). This study aims to develop a deep learning signature based on positron emission tomography/computed tomography to predict ONM of clinical stage N0 NSCLC. An internal cohort (n = 1911) is included to construct the deep learning nodal metastasis signature (DLNMS). Subsequently, an external cohort (n = 355) and a prospective cohort (n = 999) are utilized to fully validate the predictive performances of the DLNMS. Here, we show areas under the receiver operating characteristic curve of the DLNMS for occult N1 prediction are 0.958, 0.879 and 0.914 in the validation set, external cohort and prospective cohort, respectively, and for occult N2 prediction are 0.942, 0.875 and 0.919, respectively, which are significantly better than the single-modal deep learning models, clinical model and physicians. This study demonstrates that the DLNMS harbors the potential to predict ONM of clinical stage N0 NSCLC.
科研通智能强力驱动
Strongly Powered by AbleSci AI