亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Elements Selection of High Entropy Alloy Guided by Thermodynamics and the Enhanced Electrocatalytic Mechanism for Oxygen Reduction Reaction

材料科学 合金 纳米颗粒 吸附 金属 电催化剂 密度泛函理论 电子结构 热力学 物理化学 化学物理 电化学 纳米技术 计算化学 冶金 化学 物理 电极
作者
Kun Wang,Rui Chen,Hao Yang,Yuhui Chen,Hao Jia,Yu He,Shuqin Song,Yi Wang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (7) 被引量:11
标识
DOI:10.1002/adfm.202310683
摘要

Abstract Owing to their exceptional properties, high‐entropy alloys (HEAs) have received considerable attention in the field of electrocatalysis. However, few studies focus on the origin of their outstanding performance. Here, carbon‐supported PtFeCoNiMn (with an atomic ratio of 21:20:20:20:19) HEA nanoparticles via shock‐heating and shock‐cooling strategy are rationally designed and successfully prepared. The above five metal elements are rationally selected from the perspective of thermodynamics and geometric effects. Subsequently, the alloying process of the PtFeCoNiMn HEA is investigated via operando X‐ray diffraction characterizations. The electronic structures of each metal atom on the PtFeCoNiMn HEA and monometallic nanoparticles surface are revealed by density function theory calculations for illustrating the performance enhancement mechanism. It is found that Pt atoms on the PtFeCoNiMn HEA surface exhibit a wider range of d‐band center distribution range than the corresponding monometallic nanoparticles, which contributes to the enhanced selective adsorption of O 2 reactants/intermediates. Importantly, some Fe, Co, Ni, and Mn atoms on the HEA surface manifest less positive d‐band center values than the corresponding monometallic nanoparticles, with similar d‐band center positions to some Pt atoms. This indicates that the inactive atoms in monometallic nanoparticles can be transformed into ORR active sites in the HEA matrix owing to the electronic interaction between adjacent atoms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zby666完成签到,获得积分10
12秒前
隐形曼青应助悦耳的之瑶采纳,获得10
18秒前
22秒前
完美世界应助张益达采纳,获得10
37秒前
49秒前
volvoamg发布了新的文献求助10
52秒前
54秒前
1分钟前
1分钟前
1分钟前
张益达发布了新的文献求助10
1分钟前
1分钟前
1分钟前
volvoamg发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
Raine完成签到,获得积分10
2分钟前
2分钟前
volvoamg发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
HIMINNN完成签到,获得积分20
3分钟前
3分钟前
volvoamg发布了新的文献求助10
3分钟前
GCD完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
bkagyin应助司徒无剑采纳,获得10
4分钟前
4分钟前
4分钟前
樱桃猴子应助秋天采纳,获得10
4分钟前
volvoamg发布了新的文献求助10
4分钟前
4分钟前
稻子完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562020
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412604
捐赠科研通 2835934
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716878