MRI Radiomics-Based Machine Learning Models for Ki67 Expression and Gleason Grade Group Prediction in Prostate Cancer

无线电技术 前列腺癌 医学 肿瘤科 癌症 放射科 内科学
作者
Xiao‐Feng Qiao,Xiling Gu,Yunfan Liu,Xin Shu,Guangyong Ai,Shuang Qian,Li Liu,Xiaojing He,Jingjing Zhang
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:15 (18): 4536-4536 被引量:11
标识
DOI:10.3390/cancers15184536
摘要

The Ki67 index and the Gleason grade group (GGG) are vital prognostic indicators of prostate cancer (PCa). This study investigated the value of biparametric magnetic resonance imaging (bpMRI) radiomics feature-based machine learning (ML) models in predicting the Ki67 index and GGG of PCa. A total of 122 patients with pathologically proven PCa who had undergone preoperative MRI were retrospectively included. Radiomics features were extracted from T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) maps. Then, recursive feature elimination (RFE) was applied to remove redundant features. ML models for predicting Ki67 expression and GGG were constructed based on bpMRI and different algorithms, including logistic regression (LR), support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN). The performances of different models were evaluated with receiver operating characteristic (ROC) analysis. In addition, a joint analysis of Ki67 expression and GGG was performed by assessing their Spearman correlation and calculating the diagnostic accuracy for both indices. The ML model based on LR and ADC + T2 (LR_ADC + T2, AUC = 0.8882) performed best in predicting Ki67 expression, and ADC_wavelet-LHH_firstorder_Maximum had the highest feature weighting. The SVM_DWI + T2 (AUC = 0.9248) performed best in predicting GGG, and DWI_wavelet HLL_glcm_SumAverage had the highest feature weighting. The Ki67 and GGG exhibited a weak positive correlation (r = 0.382, p < 0.001), and LR_ADC + DWI had the highest diagnostic accuracy in predicting both (0.6230). The proposed ML models are suitable for predicting both Ki67 expression and GGG in PCa. This algorithm could be used to identify indolent or invasive PCa with a noninvasive, repeatable, and accurate diagnostic method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助maofeng采纳,获得10
1秒前
2秒前
ED应助李甄好采纳,获得10
2秒前
大模型应助李甄好采纳,获得10
2秒前
nkuwangkai发布了新的文献求助10
2秒前
SciGPT应助野原新之助采纳,获得10
3秒前
Jenaloe发布了新的文献求助10
3秒前
lsrlsr完成签到,获得积分10
4秒前
4秒前
大大怪发布了新的文献求助30
4秒前
5秒前
Ava应助玛琪玛小姐的狗采纳,获得10
5秒前
Lily发布了新的文献求助10
5秒前
饱满一手完成签到 ,获得积分10
6秒前
Janson完成签到,获得积分10
6秒前
文艺的明杰完成签到,获得积分10
6秒前
精明一寡发布了新的文献求助10
7秒前
7秒前
8秒前
顾矜应助椰子采纳,获得10
8秒前
研友_VZG7GZ应助虎啊虎啊采纳,获得10
8秒前
漫溢阳光完成签到 ,获得积分0
9秒前
贰鸟应助科研小白采纳,获得10
9秒前
学术小钻风关注了科研通微信公众号
9秒前
10秒前
毛子涵发布了新的文献求助20
10秒前
小次之山发布了新的文献求助50
10秒前
10秒前
10秒前
10秒前
Vaibhav发布了新的文献求助10
11秒前
从前有个线粒体完成签到,获得积分10
11秒前
12秒前
Majoe完成签到,获得积分10
12秒前
落寞鞋子发布了新的文献求助10
13秒前
酷酷学发布了新的文献求助10
13秒前
Jasper应助由北采纳,获得10
13秒前
13秒前
hss完成签到 ,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582