MRI Radiomics-Based Machine Learning Models for Ki67 Expression and Gleason Grade Group Prediction in Prostate Cancer

无线电技术 接收机工作特性 人工智能 支持向量机 有效扩散系数 特征(语言学) 加权 前列腺癌 磁共振成像 模式识别(心理学) 医学 斯皮尔曼秩相关系数 相关性 逻辑回归 数学 癌症 计算机科学 统计 放射科 内科学 哲学 语言学 几何学
作者
Xiaohong Qiao,Xiling Gu,Yunfan Liu,Xin Shu,Guangyong Ai,Shuang Qian,Li Liu,Xiaojing He,Jingjing Zhang
出处
期刊:Cancers [MDPI AG]
卷期号:15 (18): 4536-4536
标识
DOI:10.3390/cancers15184536
摘要

Purpose: The Ki67 index and the Gleason grade group (GGG) are vital prognostic indicators of prostate cancer (PCa). This study investigated the value of biparametric magnetic resonance imaging (bpMRI) radiomics feature-based machine learning (ML) models in predicting the Ki67 index and GGG of PCa. Methods: A total of 122 patients with pathologically proven PCa who had undergone preoperative MRI were retrospectively included. Radiomics features were extracted from T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) maps. Then, recursive feature elimination (RFE) was applied to remove redundant features. ML models for predicting Ki67 expression and GGG were constructed based on bpMRI and different algorithms, including logistic regression (LR), support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN). The performances of different models were evaluated with receiver operating characteristic (ROC) analysis. In addition, a joint analysis of Ki67 expression and GGG was performed by assessing their Spearman correlation and calculating the diagnostic accuracy for both indices. Results: The ML model based on LR and ADC + T2 (LR_ADC + T2, AUC = 0.8882) performed best in predicting Ki67 expression, and ADC_wavelet-LHH_firstorder_Maximum had the highest feature weighting. The SVM_DWI + T2 (AUC = 0.9248) performed best in predicting GGG, and DWI_wavelet HLL_glcm_SumAverage had the highest feature weighting. The Ki67 and GGG exhibited a weak positive correlation (r = 0.382, p < 0.001), and LR_ADC + DWI had the highest diagnostic accuracy in predicting both (0.6230). Conclusion: The proposed ML models are suitable for predicting both Ki67 expression and GGG in PCa. This algorithm could be used to identify indolent or invasive PCa with a noninvasive, repeatable, and accurate diagnostic method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵欣完成签到,获得积分10
刚刚
2秒前
科研助手完成签到,获得积分10
3秒前
3秒前
潇洒的宛菡完成签到,获得积分10
3秒前
jiajia发布了新的文献求助10
3秒前
小陈同学发布了新的文献求助10
3秒前
6秒前
嗯哼应助watertearlxy采纳,获得20
8秒前
8秒前
9秒前
繁星洒满夜幕完成签到,获得积分10
9秒前
无人深空发布了新的文献求助10
9秒前
学者发布了新的文献求助10
11秒前
矢量发布了新的文献求助10
12秒前
12秒前
13秒前
WILD发布了新的文献求助10
13秒前
慕青应助Linyi采纳,获得10
14秒前
小陈同学完成签到,获得积分10
14秒前
lilin完成签到,获得积分10
14秒前
wei完成签到,获得积分10
17秒前
扬大小汤发布了新的文献求助10
17秒前
学者完成签到,获得积分10
19秒前
火星上含芙完成签到 ,获得积分10
22秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
zho应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
思源应助科研通管家采纳,获得10
22秒前
zho应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
23秒前
毛毛虫完成签到,获得积分10
23秒前
24秒前
25秒前
ding应助Evan采纳,获得10
26秒前
Owen应助扬大小汤采纳,获得10
27秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158244
求助须知:如何正确求助?哪些是违规求助? 2809513
关于积分的说明 7882468
捐赠科研通 2468017
什么是DOI,文献DOI怎么找? 1313863
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601943