已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Drug-target interaction prediction using a multi-modal transformer network demonstrates high generalizability to unseen proteins

计算机科学 人工智能 概化理论 变压器 机器学习 小分子 计算 算法 化学 数学 物理 生物化学 量子力学 电压 统计
作者
Alexander Kroll,Sahasra Ranjan,Martin J. Lercher
标识
DOI:10.1101/2023.08.21.554147
摘要

ABSTRACT Most drugs are small molecules, with their activities typically arising from interactions with protein targets. Accurate predictions of these interactions could greatly accelerate pharmaceutical research. Current machine learning models designed for this task have a limited ability to generalize beyond the proteins used for training. This limitation is likely due to a lack of information exchange between the protein and the small molecule during the generation of the required numerical representations. Here, we introduce ProSmith, a machine learning framework that employs a multimodal Transformer Network to simultaneously process protein amino acid sequences and small molecule strings in the same input. This approach facilitates the exchange of all relevant information between the two types of molecules during the computation of their numerical representations, allowing the model to account for their structural and functional interactions. Our final model combines gradient boosting predictions based on the resulting multimodal Transformer Network with independent predictions based on separate deep learning representations of the proteins and small molecules. The resulting predictions outperform all previous models for predicting drug-target interactions, and the model demonstrates unprecedented generalization capabilities to unseen proteins. We further show that the superior performance of ProSmith is not limited to drug-target interaction predictions, but also leads to improvements in other protein-small molecule interaction prediction tasks, the prediction of Michaelis constants K M of enzyme-substrate pairs and the identification of potential substrates for enzymes. The Python code provided can be used to easily implement and improve machine learning predictions of interactions between proteins and arbitrary drug candidates or other small molecules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjx666777完成签到,获得积分10
1秒前
姜姜完成签到 ,获得积分10
1秒前
4秒前
Gahye完成签到 ,获得积分10
4秒前
lixia完成签到 ,获得积分10
4秒前
5秒前
悠悠夏日长完成签到 ,获得积分10
6秒前
lyyzxx完成签到 ,获得积分10
6秒前
HonestLiang完成签到,获得积分10
7秒前
咯咚完成签到 ,获得积分10
8秒前
学术完成签到 ,获得积分10
8秒前
lzuzhang完成签到,获得积分10
10秒前
糖糖糖发布了新的文献求助10
10秒前
共享精神应助风趣含双采纳,获得10
11秒前
pinklay完成签到 ,获得积分10
11秒前
HMR完成签到 ,获得积分10
12秒前
思源应助豆小豆采纳,获得10
12秒前
gladuhere完成签到 ,获得积分10
13秒前
思源应助贝湾采纳,获得10
17秒前
香蕉觅云应助祁白曼采纳,获得10
17秒前
19秒前
tcmlida完成签到,获得积分10
19秒前
科研韭菜完成签到 ,获得积分10
20秒前
荼白完成签到 ,获得积分10
20秒前
ff完成签到 ,获得积分10
21秒前
金钰贝儿完成签到,获得积分10
21秒前
落后盼望完成签到,获得积分10
24秒前
MUSTer一一完成签到 ,获得积分10
25秒前
Flash完成签到 ,获得积分10
26秒前
派大星完成签到 ,获得积分10
26秒前
一一应助落后盼望采纳,获得20
27秒前
很厉害的黄桃完成签到 ,获得积分10
27秒前
Aniya_Shine完成签到 ,获得积分10
28秒前
28秒前
29秒前
Tuesday完成签到 ,获得积分10
30秒前
30秒前
30秒前
微笑的白柏完成签到,获得积分10
32秒前
谨慎颜演完成签到 ,获得积分10
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133747
求助须知:如何正确求助?哪些是违规求助? 2784766
关于积分的说明 7768381
捐赠科研通 2440030
什么是DOI,文献DOI怎么找? 1297175
科研通“疑难数据库(出版商)”最低求助积分说明 624868
版权声明 600791