Image Denoising: The Deep Learning Revolution and Beyond—A Survey Paper

人工智能 降噪 图像去噪 深度学习 图像(数学) 计算机科学 计算机视觉 模式识别(心理学)
作者
Michael Elad,Bahjat Kawar,Gregory Vaksman
出处
期刊:Siam Journal on Imaging Sciences [Society for Industrial and Applied Mathematics]
卷期号:16 (3): 1594-1654 被引量:48
标识
DOI:10.1137/23m1545859
摘要

.Image denoising—removal of additive white Gaussian noise from an image—is one of the oldest and most studied problems in image processing. Extensive work over several decades has led to thousands of papers on this subject, and to many well-performing algorithms for this task. Indeed, 10 years ago, these achievements led some researchers to suspect that "Denoising is Dead," in the sense that all that can be achieved in this domain has already been obtained. However, this turned out to be far from the truth, with the penetration of deep learning (DL) into the realm of image processing. The era of DL brought a revolution to image denoising, both by taking the lead in today's ability for noise suppression in images, and by broadening the scope of denoising problems being treated. Our paper starts by describing this evolution, highlighting in particular the tension and synergy that exist between classical approaches and modern artificial intelligence (AI) alternatives in design of image denoisers. The recent transitions in the field of image denoising go far beyond the ability to design better denoisers. In the second part of this paper we focus on recently discovered abilities and prospects of image denoisers. We expose the possibility of using image denoisers for service of other problems, such as regularizing general inverse problems and serving as the prime engine in diffusion-based image synthesis. We also unveil the (strange?) idea that denoising and other inverse problems might not have a unique solution, as common algorithms would have us believe. Instead, we describe constructive ways to produce randomized and diverse high perceptual quality results for inverse problems, all fueled by the progress that DL brought to image denoising. This is a survey paper, and its prime goal is to provide a broad view of the history of the field of image denoising and closely related topics in image processing. Our aim is to give a better context to recent discoveries, and to the influence of the AI revolution in our domain.Keywordsimage denoisinginverse problemsMMSE estimationplug and play priorPnPregularization by denoisingREDLangevin dynamicsdiffusion modelsimage synthesisperceptual qualityperception-distortion trade-offMSC codes00A05
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
乔垣结衣发布了新的文献求助10
2秒前
2秒前
顾矜应助鳗鱼飞松采纳,获得10
2秒前
跳跳妈妈发布了新的文献求助30
3秒前
3秒前
lanxixi完成签到,获得积分10
3秒前
sc完成签到,获得积分10
3秒前
清河海风完成签到,获得积分10
3秒前
naturehome完成签到,获得积分10
4秒前
4秒前
小蘑菇应助124578采纳,获得10
4秒前
shirley完成签到,获得积分10
4秒前
mumu发布了新的文献求助10
5秒前
Link完成签到,获得积分20
5秒前
yar应助可爱香槟采纳,获得10
5秒前
Hello应助东风采纳,获得10
5秒前
蟹浦肉完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
Link发布了新的文献求助30
6秒前
6秒前
Sakura完成签到,获得积分20
7秒前
不安灵竹关注了科研通微信公众号
8秒前
8秒前
赵嘉钰发布了新的文献求助10
8秒前
凌晨幻舞发布了新的文献求助10
8秒前
9秒前
隐形曼青应助欧阳惜筠采纳,获得10
9秒前
毛毛发布了新的文献求助10
9秒前
zcl完成签到,获得积分10
10秒前
时尚战斗机应助Link采纳,获得10
10秒前
Ava应助黄小翰采纳,获得50
10秒前
LMX发布了新的文献求助20
11秒前
乔青完成签到,获得积分10
11秒前
过时的冬易完成签到,获得积分10
12秒前
英俊的铭应助乔leon采纳,获得10
12秒前
pride发布了新的文献求助10
13秒前
烟花应助selfevidbet采纳,获得10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002