Image Denoising: The Deep Learning Revolution and Beyond—A Survey Paper

人工智能 降噪 图像去噪 深度学习 图像(数学) 修补 计算机科学 非本地手段 算法 图像处理
作者
Michael Elad,Bahjat Kawar,Gregory Vaksman
出处
期刊:Siam Journal on Imaging Sciences [Society for Industrial and Applied Mathematics]
卷期号:16 (3): 1594-1654 被引量:18
标识
DOI:10.1137/23m1545859
摘要

Image denoising—removal of additive white Gaussian noise from an image—is one of the oldest and most studied problems in image processing. Extensive work over several decades has led to thousands of papers on this subject, and to many well-performing algorithms for this task. Indeed, 10 years ago, these achievements led some researchers to suspect that “Denoising is Dead,” in the sense that all that can be achieved in this domain has already been obtained. However, this turned out to be far from the truth, with the penetration of deep learning (DL) into the realm of image processing. The era of DL brought a revolution to image denoising, both by taking the lead in today’s ability for noise suppression in images, and by broadening the scope of denoising problems being treated. Our paper starts by describing this evolution, highlighting in particular the tension and synergy that exist between classical approaches and modern artificial intelligence (AI) alternatives in design of image denoisers. The recent transitions in the field of image denoising go far beyond the ability to design better denoisers. In the second part of this paper we focus on recently discovered abilities and prospects of image denoisers. We expose the possibility of using image denoisers for service of other problems, such as regularizing general inverse problems and serving as the prime engine in diffusion-based image synthesis. We also unveil the (strange?) idea that denoising and other inverse problems might not have a unique solution, as common algorithms would have us believe. Instead, we describe constructive ways to produce randomized and diverse high perceptual quality results for inverse problems, all fueled by the progress that DL brought to image denoising. This is a survey paper, and its prime goal is to provide a broad view of the history of the field of image denoising and closely related topics in image processing. Our aim is to give a better context to recent discoveries, and to the influence of the AI revolution in our domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
天天快乐应助干羞花采纳,获得10
7秒前
科研通AI2S应助RRROP采纳,获得10
8秒前
李爱国应助细心以旋采纳,获得10
9秒前
zhangxinan完成签到,获得积分10
9秒前
诸苑博给诸苑博的求助进行了留言
10秒前
小二郎应助勤奋的南子采纳,获得10
12秒前
北三十发布了新的文献求助10
14秒前
mmyhn应助可靠的寒风采纳,获得20
14秒前
快乐茗完成签到,获得积分10
15秒前
张文博完成签到,获得积分10
17秒前
19秒前
细心以旋完成签到,获得积分20
21秒前
科研通AI2S应助大旭采纳,获得10
22秒前
不说话的不倒翁完成签到 ,获得积分10
23秒前
君知完成签到,获得积分10
25秒前
细心以旋发布了新的文献求助10
26秒前
乐乐完成签到,获得积分10
26秒前
十公里发布了新的文献求助10
28秒前
30秒前
honghong完成签到 ,获得积分10
31秒前
32秒前
吉吉国王完成签到 ,获得积分10
33秒前
小桑桑完成签到,获得积分10
35秒前
35秒前
RRROP发布了新的文献求助10
36秒前
42秒前
42秒前
ayayaya完成签到 ,获得积分10
44秒前
babayega完成签到,获得积分20
46秒前
田様应助Tantantan采纳,获得10
46秒前
47秒前
mjn404发布了新的文献求助10
49秒前
所所应助feiten采纳,获得10
50秒前
51秒前
wanci应助直率亦玉采纳,获得10
51秒前
乐乐发布了新的文献求助30
52秒前
52秒前
53秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151938
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852661
捐赠科研通 2460630
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601760